335 research outputs found

    What factors drive corporate customer satisfaction with e-banking services

    Get PDF
    Due to the burgeoning development of electronic commerce (e-commerce),the broader applications of emerging service-Internet baking (e-banking) services have been introduced and provided by financial holding companies or banks at an accelerating rate in recent years since they can provide efficient, reliable, securable, and convenient financial services, such as online payment, deposit/loan, trading, and clearing/settlement, via electronic channels (e-channels, e.g., Internet and phone) for customers. E-banking services not only can create new competitive advantages, perhaps, but also can improve their relationships with customers for banks. Obviously, e-banking can offer better services required by corporations and individuals, it could be a strategic niche no matter for banks or their customers. Conceivably, how to implement e-banking successfully is becoming a critical management issue. Unfortunately, research pays scarce attentions on what factors drive success of e-banking, particularly from corporate customers\u27 perspective. For the reason, this paper attempts to explore what factors affect corporate customer satisfaction with e-banking (CCSEB) which is one surrogate variable of success of e-banking services. Based on a survey of 178 respondents collected from Taiwan companies, the results support that environmental, organizational, and globalization factors will affect customer satisfaction with e-banking significantly. Furthermore, there exist a reciprocal relationship between customer satisfaction and post-usage favorite behavior. We believe the results and findings proposed in this paper not only can offer in-depth insights for practitioners about how to implement e-banking successfully, but also can be further directions for researchers interested in designing related theories

    Ceftriaxone attenuates hypoxic-ischemic brain injury in neonatal rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Perinatal brain injury is the leading cause of subsequent neurological disability in both term and preterm baby. Glutamate excitotoxicity is one of the major factors involved in perinatal hypoxic-ischemic encephalopathy (HIE). Glutamate transporter GLT1, expressed mainly in mature astrocytes, is the major glutamate transporter in the brain. HIE induced excessive glutamate release which is not reuptaked by immature astrocytes may induce neuronal damage. Compounds, such as ceftriaxone, that enhance the expression of GLT1 may exert neuroprotective effect in HIE.</p> <p>Methods</p> <p>We used a neonatal rat model of HIE by unilateral ligation of carotid artery and subsequent exposure to 8% oxygen for 2 hrs on postnatal day 7 (P7) rats. Neonatal rats were administered three dosages of an antibiotic, ceftriaxone, 48 hrs prior to experimental HIE. Neurobehavioral tests of treated rats were assessed. Brain sections from P14 rats were examined with Nissl and immunohistochemical stain, and TUNEL assay. GLT1 protein expression was evaluated by Western blot and immunohistochemistry.</p> <p>Results</p> <p>Pre-treatment with 200 mg/kg ceftriaxone significantly reduced the brain injury scores and apoptotic cells in the hippocampus, restored myelination in the external capsule of P14 rats, and improved the hypoxia-ischemia induced learning and memory deficit of P23-24 rats. GLT1 expression was observed in the cortical neurons of ceftriaxone treated rats.</p> <p>Conclusion</p> <p>These results suggest that pre-treatment of infants at risk for HIE with ceftriaxone may reduce subsequent brain injury.</p

    Investigation of a Photoelectrochemical Passivated ZnO-Based Glucose Biosensor

    Get PDF
    A vapor cooling condensation system was used to deposit high quality intrinsic ZnO thin films and intrinsic ZnO nanorods as the sensing membrane of extended-gate field-effect-transistor (EGFET) glucose biosensors. The sensing sensitivity of the resulting glucose biosensors operated in the linear range was 13.4 μA mM−1 cm−2. To improve the sensing sensitivity of the ZnO-based glucose biosensors, the photoelectrochemical method was utilized to passivate the sidewall surfaces of the ZnO nanorods. The sensing sensitivity of the ZnO-based glucose biosensors with passivated ZnO nanorods was significantly improved to 20.33 μA mM−1 cm−2 under the same measurement conditions. The experimental results verified that the sensing sensitivity improvement was the result of the mitigation of the Fermi level pinning effect caused by the dangling bonds and the surface states induced on the sidewall surface of the ZnO nanorods

    Essential and recurrent roles for hairpin RNAs in silencing \u3ci\u3ede novo sex\u3c/i\u3e chromosome conflict in \u3ci\u3eDrosophila simulans\u3c/i\u3e

    Get PDF
    Meiotic drive loci distort the normally equal segregation of alleles, which benefits their own transmission even in the face of severe fitness costs to their host organism. However, relatively little is known about the molecular identity of meiotic drivers, their strategies of action, and mechanisms that can suppress their activity. Here, we present data from the fruitfly Drosophila simulans that address these questions. We show that a family of de novo, protamine- derived X-linked selfish genes (the Dox gene family) is silenced by a pair of newly emerged hairpin RNA (hpRNA) small interfering RNA (siRNA)-class loci, Nmy and Tmy. In the w[XD1] genetic background, knockout of nmy derepresses Dox and MDox in testes and depletes male progeny, whereas knockout of tmy causes misexpression of PDox genes and renders males sterile. Importantly, genetic interactions between nmy and tmy mutant alleles reveal that Tmy also specifically maintains male progeny for normal sex ratio. We show the Dox loci are functionally polymorphic within D. simulans, such that both nmy-associated sex ratio bias and tmy-associated sterility can be rescued by wild-type X chromosomes bearing natural deletions in different Dox family genes. Finally, using tagged transgenes of Dox and PDox2, we provide the first experimental evidence Dox family genes encode proteins that are strongly derepressed in cognate hpRNA mutants. Altogether, these studies support a model in which protamine-derived drivers and hpRNA suppressors drive repeated cycles of sex chromosome conflict and resolution that shape genome evolution and the genetic control of male gametogenesis

    Estrogen Modulates the Sensitivity of Lung Vagal C Fibers in Female Rats Exposed to Intermittent Hypoxia

    Get PDF
    Obstructive sleep apnea is mainly characterized by intermittent hypoxia (IH), which is associated with hyperreactive airway diseases and lung inflammation. Sensitization of lung vagal C fibers (LVCFs) induced by inflammatory mediators may play a central role in the pathogenesis of airway hypersensitivity. In females, estrogen interferes with inflammatory signaling pathways that may modulate airway hyperreactivity. In this study, we investigated the effects of IH on the reflex and afferent responses of LVCFs to chemical stimulants and lung inflammation in adult female rats, as well as the role of estrogen in these responses. Intact and ovariectomized (OVX) female rats were exposed to room air (RA) or IH for 14 consecutive days. On day 15, IH enhanced apneic responses to right atrial injection of chemical stimulants of LVCFs (e.g., capsaicin, phenylbiguanide, and α,β-methylene-ATP) in intact anesthetized females. Rats subjected to OVX prior to IH exposure exhibited an augmented apneic response to the same dose of stimulants compared with rats subjected to other treatments. Apneic responses to the stimulants were completely abrogated by bilateral vagotomy or perivagal capsaicin treatment, which blocked the neural conduction of LVCFs. Electrophysiological experiments revealed that in IH-exposed rats, OVX potentiated the excitability of LVCFs to stimulants. Moreover, LVCF hypersensitivity in rats subjected to OVX prior to IH exposure was accompanied by enhanced lung inflammation, which was reflected by elevated inflammatory cell infiltration in bronchoalveolar lavage fluid, lung lipid peroxidation, and protein expression of inflammatory cytokines. Supplementation with 17β-estradiol (E2) at a low concentration (30 μg/ml) but not at high concentrations (50 and 150 μg/ml) prevented the augmenting effects of OVX on LVCF sensitivity and lung inflammation caused by IH. These results suggest that ovarian hormones prevent the enhancement of LVCF sensitivity and lung inflammation by IH in female rats, which are related to the effect of low-dose estrogen

    Is Duhuo Jisheng Tang containing Xixin safe? A four-week safety study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Though the nephrotoxicity and carcinogenicity of aristolochic acid (AA) are known, its safety in clinical usage is not clear. This study aims to evaluate the safety of <it>Duhuo Jisheng Tang </it>(DJT) in a four-week study to treat osteoarthritis (OA) of the knee.</p> <p>Methods</p> <p>A qualitative and quantitative investigations on DJT were conducted. A list of adverse events (AEs), complete blood counts, and liver and kidney function tests were measured for participants with knee OA at their scheduled hospital visits. Each detected AEs was independently assessed for severity and causality by site investigators (Chinese medical doctors) and study nurses.</p> <p>Results</p> <p>A total of 71 eligible subjects were included in the clinical study where 287 AEs were reported. DJT did not contain detectable aristolochic acid (AA) under thin-layer chromatography (TLC) analysis and gas chromatography coupled with mass spectrometry (GC-MS). There were no significant changes in liver or kidney functions.</p> <p>Conclusion</p> <p>In four-week use of DJT, no renal tubular damage, no severe incidences of AEs and adverse drug reactions (ADRs) were observed. The present study obtained safety data from active surveillance of DJT.</p
    corecore