2,151 research outputs found

    A computer program for evaluating propellant heating and radiation dosage to crews of nuclear-powered rocket vehicles

    Get PDF
    Program evaluates propellant heating in a nuclear rocket stage. Program code employs infinite-medium buildup factors to calculate gamma dosage and employs the Albert-Welton kernal to calculate the fast neutron dosage

    Computer program optimizes design of nuclear radiation shields

    Get PDF
    Computer program, OPEX 2, determines minimum weight, volume, or cost for shields. Program incorporates improved coding, simplified data input, spherical geometry, and an expanded output. Method is capable of altering dose-thickness relationship when a shield layer has been removed

    A note on the measurement of phase space observables with an eight-port homodyne detector

    Full text link
    It is well known that the Husimi Q-function of the signal field can actually be measured by the eight-port homodyne detection technique, provided that the reference beam (used for homodyne detection) is a very strong coherent field so that it can be treated classically. Using recent rigorous results on the quantum theory of homodyne detection observables, we show that any phase space observable, and not only the Q-function, can be obtained as a high amplitude limit of the signal observable actually measured by an eight-port homodyne detector. The proof of this fact does not involve any classicality assumption.Comment: 8 pages, 1 figur

    The DOPEX Code: an Application of the Method of Steepest Descent to Laminated-Shield-Weight Optimization with Several Constraints

    Get PDF
    A two- or three-constraint, two-dimensional radiation shield weight optimization procedure and a computer program, DOPEX, is described. The DOPEX code uses the steepest descent method to alter a set of initial (input) thicknesses for a shield configuration to achieve a minimum weight while simultaneously satisfying dose constaints. The code assumes an exponential dose-shield thickness relation with parameters specified by the user. The code also assumes that dose rates in each principal direction are dependent only on thicknesses in that direction. Code input instructions, FORTRAN 4 listing, and a sample problem are given. Typical computer time required to optimize a seven-layer shield is about 0.1 minute on an IBM 7094-2

    Application of the method of steepest descent to laminated shield weight optimization with several constraints: Theory

    Get PDF
    The method of steepest descent used in optimizing one-dimensional layered radiation shields is extended to multidimensional, multiconstraint situations. The multidimensional optimization algorithm and equations are developed for the case of a dose constraint in any one direction being dependent only on the shield thicknesses in that direction and independent of shield thicknesses in other directions. Expressions are derived for one-, two-, and three-dimensional cases (one, two, and three constraints). The precedure is applicable to the optimization of shields where there are different dose constraints and layering arrangements in the principal directions

    On the notion of coexistence in quantum mechanics

    Get PDF
    The notion of coexistence of quantum observables was introduced to describe the possibility of measuring two or more observables together. Here we survey the various different formalisations of this notion and their connections. We review examples illustrating the necessary degrees of unsharpness for two noncommuting observables to be jointly measurable (in one sense of the phrase). We demonstrate the possibility of measuring together (in another sense of the phrase) noncoexistent observables. This leads us to a reconsideration of the connection between joint measurability and noncommutativity of observables and of the statistical and individual aspects of quantum measurements

    Covariant localizations in the torus and the phase observables

    Get PDF
    We describe all the localization observables of a quantum particle in a one-dimensional box in terms of sequences of unit vectors in a Hilbert space. An alternative representation in terms of positive semidefinite complex matrices is furnished and the commutative localizations are singled out. As a consequence, we also get a vector sequence characterization of the covariant phase observables.Comment: 16 pages, no figure, Latex2

    Multigroup calculations of resonance neutron capture in a thick slab of depleted uranium

    Get PDF
    Multigroup calculations of resonance neutron capture in thick slab of depleted U-23
    corecore