5 research outputs found

    Vegetation development in an Amazonian peatland

    No full text
    Recent investigations of wetlands in western Amazonia have revealed the presence of extensive peat deposits up to 7.5 m thick developing under a variety of vegetation types. We report the first attempt to establish the long-term (centennial to millennial scale) vegetation history of one of these peatland sites, Quistococha, a palm swamp close to Iquitos in northern Peru. Pollen and sedimentological analyses show that peat formation began at the core site under sedge fen or floating mat vegetation c. 2200 calendar years before present (cal yr BP). A seasonally flooded woodland developed c. 1880 cal yr BP. The permanently waterlogged palm swamp which persists today began to form c. 1000 cal yr BP, with the present vegetation community established by c. 400 years ago. The vegetation at this site has undergone continuous change throughout the period of peat formation, with several abrupt transitions, and reversals and repetitions in the apparent trajectory of change. The pollen data, combined with sedimentary evidence, suggest that the dominant control on ecosystem functioning and development is the flooding regime. There appears to have been a decrease in fluvial influence over time. There is no clear evidence of direct climatic or anthropogenic influence although we cannot rule out the possibility of climatically driven hydrological changes. Our results caution against adopting a simple model of peatland vegetation succession in this region. (C) 2013 Elsevier B.V. All rights reserved.</p

    European Lifestyles. The future issue. EC project "SPREAD - Sustainable Lifestyles 2050

    No full text
    Final report for dissemination of the EC project "SPREAD - Sustainable Lifestyles 2050. Sustainable practices of today and tomorrow, Scenarios for 2050 and Roadmaps to 2050 are described in this magazine in simple and effective way

    Risks to carbon storage from land-use change revealed by peat thickness maps of Peru

    No full text
    Tropical peatlands are among the most carbon-dense ecosystems but land-use change has led to the loss of large peatland areas, associated with substantial greenhouse gas emissions. To design effective conservation and restoration policies, maps of the location and carbon storage of tropical peatlands are vital. This is especially so in countries such as Peru where the distribution of its large, hydrologically intact peatlands is poorly known. Here field and remote sensing data support the model development of peatland extent and thickness for lowland Peruvian Amazonia. We estimate a peatland area of 62,714 km2 (5th and 95th confidence interval percentiles of 58,325 and 67,102 km2, respectively) and carbon stock of 5.4 (2.6–10.6) PgC, a value approaching the entire above-ground carbon stock of Peru but contained within just 5% of its land area. Combining the map of peatland extent with national land-cover data we reveal small but growing areas of deforestation and associated CO2 emissions from peat decomposition due to conversion to mining, urban areas and agriculture. The emissions from peatland areas classified as forest in 2000 represent 1–4% of Peruvian CO2 forest emissions between 2000 and 2016. We suggest that bespoke monitoring, protection and sustainable management of tropical peatlands are required to avoid further degradation and CO2 emissions
    corecore