42 research outputs found
The Structure of Lie Algebras and the Classification Problem for Partial Differential Equations
The present paper solves completely the problem of the group classification
of nonlinear heat-conductivity equations of the form\
. We have proved, in particular,
that the above class contains no nonlinear equations whose invariance algebra
has dimension more than five. Furthermore, we have proved that there are two,
thirty-four, thirty-five, and six inequivalent equations admitting one-, two-,
three-, four- and five-dimensional Lie algebras, respectively. Since the
procedure which we use, relies heavily upon the theory of abstract Lie algebras
of low dimension, we give a detailed account of the necessary facts. This
material is dispersed in the literature and is not fully available in English.
After this algebraic part we give a detailed description of the method and then
we derive the forms of inequivalent invariant evolution equations, and compute
the corresponding maximal symmetry algebras. The list of invariant equations
obtained in this way contains (up to a local change of variables) all the
previously-known invariant evolution equations belonging to the class of
partial differential equations under study.Comment: 45 page
Symmetry classification of third-order nonlinear evolution equations. Part I: Semi-simple algebras
We give a complete point-symmetry classification of all third-order evolution
equations of the form
which admit semi-simple symmetry algebras and extensions of these semi-simple
Lie algebras by solvable Lie algebras. The methods we employ are extensions and
refinements of previous techniques which have been used in such
classifications.Comment: 53 page
New results on group classification of nonlinear diffusion-convection equations
Using a new method and additional (conditional and partial) equivalence
transformations, we performed group classification in a class of variable
coefficient -dimensional nonlinear diffusion-convection equations of the
general form We obtain new interesting cases of
such equations with the density localized in space, which have large
invariance algebra. Exact solutions of these equations are constructed. We also
consider the problem of investigation of the possible local trasformations for
an arbitrary pair of equations from the class under consideration, i.e. of
describing all the possible partial equivalence transformations in this class.Comment: LaTeX2e, 19 page
Group classification of heat conductivity equations with a nonlinear source
We suggest a systematic procedure for classifying partial differential
equations invariant with respect to low dimensional Lie algebras. This
procedure is a proper synthesis of the infinitesimal Lie's method, technique of
equivalence transformations and theory of classification of abstract low
dimensional Lie algebras. As an application, we consider the problem of
classifying heat conductivity equations in one variable with nonlinear
convection and source terms. We have derived a complete classification of
nonlinear equations of this type admitting nontrivial symmetry. It is shown
that there are three, seven, twenty eight and twelve inequivalent classes of
partial differential equations of the considered type that are invariant under
the one-, two-, three- and four-dimensional Lie algebras, correspondingly.
Furthermore, we prove that any partial differential equation belonging to the
class under study and admitting symmetry group of the dimension higher than
four is locally equivalent to a linear equation. This classification is
compared to existing group classifications of nonlinear heat conductivity
equations and one of the conclusions is that all of them can be obtained within
the framework of our approach. Furthermore, a number of new invariant equations
are constructed which have rich symmetry properties and, therefore, may be used
for mathematical modeling of, say, nonlinear heat transfer processes.Comment: LaTeX, 51 page
Enhanced Group Analysis and Exact Solutions of Variable Coefficient Semilinear Diffusion Equations with a Power Source
A new approach to group classification problems and more general
investigations on transformational properties of classes of differential
equations is proposed. It is based on mappings between classes of differential
equations, generated by families of point transformations. A class of variable
coefficient (1+1)-dimensional semilinear reaction-diffusion equations of the
general form () is studied from the
symmetry point of view in the framework of the approach proposed. The singular
subclass of the equations with is singled out. The group classifications
of the entire class, the singular subclass and their images are performed with
respect to both the corresponding (generalized extended) equivalence groups and
all point transformations. The set of admissible transformations of the imaged
class is exhaustively described in the general case . The procedure of
classification of nonclassical symmetries, which involves mappings between
classes of differential equations, is discussed. Wide families of new exact
solutions are also constructed for equations from the classes under
consideration by the classical method of Lie reductions and by generation of
new solutions from known ones for other equations with point transformations of
different kinds (such as additional equivalence transformations and mappings
between classes of equations).Comment: 40 pages, this is version published in Acta Applicanda Mathematica
Group Analysis of Variable Coefficient Diffusion-Convection Equations. I. Enhanced Group Classification
We discuss the classical statement of group classification problem and some
its extensions in the general case. After that, we carry out the complete
extended group classification for a class of (1+1)-dimensional nonlinear
diffusion--convection equations with coefficients depending on the space
variable. At first, we construct the usual equivalence group and the extended
one including transformations which are nonlocal with respect to arbitrary
elements. The extended equivalence group has interesting structure since it
contains a non-trivial subgroup of non-local gauge equivalence transformations.
The complete group classification of the class under consideration is carried
out with respect to the extended equivalence group and with respect to the set
of all point transformations. Usage of extended equivalence and correct choice
of gauges of arbitrary elements play the major role for simple and clear
formulation of the final results. The set of admissible transformations of this
class is preliminary investigated.Comment: 25 page
Conservation laws for self-adjoint first order evolution equations
In this work we consider the problem on group classification and conservation
laws of the general first order evolution equations. We obtain the subclasses
of these general equations which are quasi-self-adjoint and self-adjoint. By
using the recent Ibragimov's Theorem on conservation laws, we establish the
conservation laws of the equations admiting self-adjoint equations. We
illustrate our results applying them to the inviscid Burgers' equation. In
particular an infinite number of new symmetries of these equations are found
and their corresponding conservation laws are established.Comment: This manuscript has been accepted for publication in Journal of
Nonlinear Mathematical Physic
Projective analysis and preliminary group classification of the nonlinear fin equation
In this paper we investigate for further symmetry properties of the nonlinear
fin equations of the general form rather than recent
works on these equations. At first, we study the projective (fiber-preserving)
symmetry to show that equations of the above class can not be reduced to linear
equations. Then we determine an equivalence classification which admits an
extension by one dimension of the principal Lie algebra of the equation. The
invariant solutions of equivalence transformations and classification of
nonlinear fin equations among with additional operators are also given.Comment: 9 page