23 research outputs found

    Bayesian modelling captures inter-individual differences in social belief computations in the putamen and insula

    Get PDF
    Computational models of social learning and decision-making provide mechanistic tools to investigate the neural mechanisms that are involved in understanding other people. While most studies employ explicit instructions to learn from social cues, everyday life is characterized by the spontaneous use of such signals (e.g., the gaze of others) to infer on internal states such as intentions. To investigate the neural mechanisms of the impact of gaze cues on learning and decision-making, we acquired behavioural and fMRI data from 50 participants performing a probabilistic task, in which cards with varying winning probabilities had to be chosen. In addition, the task included a computer-generated face that gazed towards one of these cards providing implicit advice. Participants\u2019 individual belief trajectories were inferred using a hierarchical Gaussian filter (HGF) and used as predictors in a linear model of neuronal activation. During learning, social prediction errors were correlated with activity in inferior frontal gyrus and insula. During decision-making, the belief about the accuracy of the social cue was correlated with activity in inferior temporal gyrus, putamen and pallidum while the putamen and insula showed activity as a function of individual differences in weighting the social cue during decision-making. Our findings demonstrate that model-based fMRI can give insight into the behavioural and neural aspects of spontaneous social cue integration in learning and decision-making. They provide evidence for a mechanistic involvement of specific components of the basal ganglia in subserving these processes

    Mental Action Simulation Synchronizes Action-Observation Circuits across Individuals

    Get PDF
    A frontoparietal action–observation network (AON) has been proposed to support understanding others' actions and goals. We show that the AON "ticks together" in human subjects who are sharing a third person's feelings. During functional magnetic resonance imaging, 20 volunteers watched movies depicting boxing matches passively or while simulating a prespecified boxer's feelings. Instantaneous intersubject phase synchronization (ISPS) was computed to derive multisubject voxelwise similarity of hemodynamic activity and inter-area functional connectivity. During passive viewing, subjects' brain activity was synchronized in sensory projection and posterior temporal cortices. Simulation induced widespread increase of ISPS in the AON (premotor, posterior parietal, and superior temporal cortices), primary and secondary somatosensory cortices, and the dorsal attention circuits (frontal eye fields, intraparietal sulcus). Moreover, interconnectivity of these regions strengthened during simulation. We propose that sharing a third person's feelings synchronizes the observer's own brain mechanisms supporting sensations and motor planning, thereby likely promoting mutual understanding.Peer reviewe

    Aberrant computational mechanisms of social learning and decision-making in schizophrenia and borderline personality disorder

    Get PDF
    Psychiatric disorders are ubiquitously characterized by debilitating social impairments. These difficulties are thought to emerge from aberrant social inference. In order to elucidate the underlying computational mechanisms, patients diagnosed with major depressive disorder (N = 29), schizophrenia (N = 31), and borderline personality disorder (N = 31) as well as healthy controls (N = 34) performed a probabilistic reward learning task in which participants could learn from social and nonsocial information. Patients with schizophrenia and borderline personality disorder performed more poorly on the task than healthy controls and patients with major depressive disorder. Broken down by domain, borderline personality disorder patients performed better in the social compared to the non-social domain. In contrast, controls and MDD patients showed the opposite pattern and SCZ patients showed no difference between domains. In effect, borderline personality disorder patients gave up a possible overall performance advantage by concentrating their learning in the social at the expense of the non-social domain. We used computational modeling to assess learning and decision-making parameters estimated for each participant from their behavior. This enabled additional insights into the underlying learning and decision-making mechanisms. Patients with borderline personality disorder showed slower learning from social and non-social information and an exaggerated sensitivity to changes in environmental volatility, both in the non-social and the social domain, but more so in the latter. Regarding decision-making the modeling revealed that compared to controls and major depression patients, patients with borderline personality disorder and schizophrenia showed a stronger reliance on social relative to non-social information when making choices. Depressed patients did not differ significantly from controls in this respect. Overall, our results are consistent with the notion of a general interpersonal hypersensitivity in borderline personality disorder and schizophrenia based on a shared computational mechanism characterized by an over-reliance on beliefs about others in making decisions and by an exaggerated need to make sense of others during learning specifically in borderline personality disorder

    Stimulus-Related Independent Component and Voxel-Wise Analysis of Human Brain Activity during Free Viewing of a Feature Film

    Get PDF
    Understanding how the brain processes stimuli in a rich natural environment is a fundamental goal of neuroscience. Here, we showed a feature film to 10 healthy volunteers during functional magnetic resonance imaging (fMRI) of hemodynamic brain activity. We then annotated auditory and visual features of the motion picture to inform analysis of the hemodynamic data. The annotations were fitted to both voxel-wise data and brain network time courses extracted by independent component analysis (ICA). Auditory annotations correlated with two independent components (IC) disclosing two functional networks, one responding to variety of auditory stimulation and another responding preferentially to speech but parts of the network also responding to non-verbal communication. Visual feature annotations correlated with four ICs delineating visual areas according to their sensitivity to different visual stimulus features. In comparison, a separate voxel-wise general linear model based analysis disclosed brain areas preferentially responding to sound energy, speech, music, visual contrast edges, body motion and hand motion which largely overlapped the results revealed by ICA. Differences between the results of IC- and voxel-based analyses demonstrate that thorough analysis of voxel time courses is important for understanding the activity of specific sub-areas of the functional networks, while ICA is a valuable tool for revealing novel information about functional connectivity which need not be explained by the predefined model. Our results encourage the use of naturalistic stimuli and tasks in cognitive neuroimaging to study how the brain processes stimuli in rich natural environments

    What is the role of the film viewer? The effects of narrative comprehension and viewing task on gaze control in film

    Get PDF
    Film is ubiquitous, but the processes that guide viewers' attention while viewing film narratives are poorly understood. In fact, many film theorists and practitioners disagree on whether the film stimulus (bottom-up) or the viewer (top-down) is more important in determining how we watch movies. Reading research has shown a strong connection between eye movements and comprehension, and scene perception studies have shown strong effects of viewing tasks on eye movements, but such idiosyncratic top-down control of gaze in film would be anathema to the universal control mainstream filmmakers typically aim for. Thus, in two experiments we tested whether the eye movements and comprehension relationship similarly held in a classic film example, the famous opening scene of Orson Welles' Touch of Evil (Welles & Zugsmith, Touch of Evil, 1958). Comprehension differences were compared with more volitionally controlled task-based effects on eye movements. To investigate the effects of comprehension on eye movements during film viewing, we manipulated viewers' comprehension by starting participants at different points in a film, and then tracked their eyes. Overall, the manipulation created large differences in comprehension, but only produced modest differences in eye movements. To amplify top-down effects on eye movements, a task manipulation was designed to prioritize peripheral scene features: a map task. This task manipulation created large differences in eye movements when compared to participants freely viewing the clip for comprehension. Thus, to allow for strong, volitional top-down control of eye movements in film, task manipulations need to make features that are important to narrative comprehension irrelevant to the viewing task. The evidence provided by this experimental case study suggests that filmmakers' belief in their ability to create systematic gaze behavior across viewers is confirmed, but that this does not indicate universally similar comprehension of the film narrative

    A naturalistic paradigm simulating gaze-based social interactions for the investigation of social agency

    No full text
    Sense of agency describes the experience of being the cause of one's own actions and the resulting effects. In a social interaction, one's actions may also have a perceivable effect on the actions of others. In this article, we refer to the experience of being responsible for the behavior of others as social agency, which has important implications for the success or failure of social interactions. Gaze-contingent eyetracking paradigms provide a useful tool to analyze social agency in an experimentally controlled manner, but the current methods are lacking in terms of their ecological validity. We applied this technique in a novel task using video stimuli of real gaze behavior to simulate a gaze-based social interaction. This enabled us to create the impression of a live interaction with another person while being able to manipulate the gaze contingency and congruency shown by the simulated interaction partner in a continuous manner. Behavioral data demonstrated that participants believed they were interacting with a real person and that systematic changes in the responsiveness of the simulated partner modulated the experience of social agency. More specifically, gaze contingency (temporal relatedness) and gaze congruency (gaze direction relative to the participant's gaze) influenced the explicit sense of being responsible for the behavior of the other. In general, our study introduces a new naturalistic task to simulate gaze-based social interactions and demonstrates that it is suitable to studying the explicit experience of social agency

    Imagery of negative interpersonal experiences influence the neural mechanisms of social interaction

    No full text
    Negative interpersonal experiences are a key contributor to psychiatric disorders. While previous research has shown that negative interpersonal experiences influence social cognition, less is known about the effects on participation in social interactions and the underlying neurobiology. To address this, we developed a new naturalistic version of a gaze-contingent paradigm using real video sequences of gaze behaviour that respond to the participants' gaze in real-time in order to create a believable and continuous interactive social situation. Additionally, participants listened to two autobiographical audio-scripts that guided them to imagine a recent stressful and a relaxing situation and performed the gaze-based social interaction task before and after the presentation of either the stressful or the relaxing audio-script. Our results demonstrate that the social interaction task robustly recruits brain areas with known involvement in social cognition, namely the medial prefrontal cortex, bilateral temporoparietal junction, superior temporal sulcus as well as the precuneus. Imagery of negative interpersonal experiences compared to relaxing imagery led to a prolonged change in affective state and to increased brain responses during the subsequent social interaction paradigm in the temporoparietal junction, medial prefrontal cortex, anterior cingulate cortex, precuneus and inferior frontal gyrus. Taken together this study presents a new naturalistic social interaction paradigm suitable to study the neural mechanisms of social interaction and the results demonstrate that the imagery of negative interpersonal experiences affects social interaction on neural levels

    Synchronous brain activity across individuals underlies shared psychological perspectives

    Get PDF
    For successful communication, we need to understand the external world consistently with others. This task requires sufficiently similar cognitive schemas or psychological perspectives that act as filters to guide the selection, interpretation and storage of sensory information, perceptual objects and events. Here we show that when individuals adopt a similar psychological perspective during natural viewing, their brain activity becomes synchronized in specific brain regions. We measured brain activity with functional magnetic resonance imaging (fMRI) from 33 healthy participants who viewed a 10-min movie twice, assuming once a ‘social’ (detective) and once a ‘non-social’ (interior decorator) perspective to the movie events. Pearson's correlation coefficient was used to derive multisubject voxelwise similarity measures (inter-subject correlations; ISCs) of functional MRI data. We used k-nearest-neighbor and support vector machine classifiers as well as a Mantel test on the ISC matrices to reveal brain areas wherein ISC predicted the participants' current perspective. ISC was stronger in several brain regions—most robustly in the parahippocampal gyrus, posterior parietal cortex and lateral occipital cortex—when the participants viewed the movie with similar rather than different perspectives. Synchronization was not explained by differences in visual sampling of the movies, as estimated by eye gaze. We propose that synchronous brain activity across individuals adopting similar psychological perspectives could be an important neural mechanism supporting shared understanding of the environment.Peer reviewe
    corecore