2,201 research outputs found

    Objective Classification of Galaxy Spectra using the Information Bottleneck Method

    Get PDF
    A new method for classification of galaxy spectra is presented, based on a recently introduced information theoretical principle, the `Information Bottleneck'. For any desired number of classes, galaxies are classified such that the information content about the spectra is maximally preserved. The result is classes of galaxies with similar spectra, where the similarity is determined via a measure of information. We apply our method to approximately 6000 galaxy spectra from the ongoing 2dF redshift survey, and a mock-2dF catalogue produced by a Cold Dark Matter-based semi-analytic model of galaxy formation. We find a good match between the mean spectra of the classes found in the data and in the models. For the mock catalogue, we find that the classes produced by our algorithm form an intuitively sensible sequence in terms of physical properties such as colour, star formation activity, morphology, and internal velocity dispersion. We also show the correlation of the classes with the projections resulting from a Principal Component Analysis.Comment: submitted to MNRAS, 17 pages, Latex, with 14 figures embedde

    The Cosmological Mean Density and its Local Variations Probed by Peculiar Velocities

    Full text link
    Peculiar velocities thoughout the region of the local supercluster are reconstructed by two different orbit-retracing methods. The requirement of the optimal correlation between the radial components of reconstructed velocities and the observed peculiar velocities derived from our extensive new catalog of distances puts stringent constraints on the values of the cosmological parameters. Our constraints intersect those from studies of microwave background fluctuations and statistical properties of galaxy clustering: the ensemble of constraints are consistent with Omega_m=0.22\pm 0.02. While motions throughout the Local Supercluster provide a measure of the mean ratio of mass to light, there can be large local fluctuations. Our reconstruction of the infall velocities in the immediate vicinity of the Virgo Cluster shows that there is a mass-to-light anomaly of a factor of 3 to 6 between groups in the general field environment and the heavily populated Virgo Cluster.Comment: 4 pages, 2 figures, version to appear in Astrophysical Journal Letter

    Acoustic peaks and dips in the CMB power spectrum: observational data and cosmological constraints

    Get PDF
    The locations and amplitudes of three acoustic peaks and two dips in the last releases of the Boomerang, MAXIMA and DASI measurements of the cosmic microwave background (CMB) anisotropy power spectra as well as their statistical confidence levels are determined in a model-independent way. It is shown that the Boomerang-2001 data (Netterfield et al. 2001) fixes the location and amplitude of the first acoustic peak at more than 3\sigma confidence level. The next two peaks and dips are determined at a confidence level above 1\sigma but below 2\sigma. The locations and amplitudes of the first three peaks and two dips are 212+/-17, 5426+/-1218\mu K^2, 544+/-56, 2266+/-607\mu K^2, 843+/-35, 2077+/-876\mu K^2, 413+/-50, 1960+/-503\mu K^2, 746+/-89, 1605+/-650\mu K^2 respectively (1\sigma errors include statistical and systematic errors). The MAXIMA and DASI experiments give similar values for the extrema which they determine. The determined cosmological parameters from the CMB acoustic extrema data show good agreement with other determinations, especially with the baryon content as deduced from standard nucleosynthesis constraints. These data supplemented by the constraints from direct measurements of some cosmological parameters and data on large scale structure lead to a best-fit model which agrees with practically all the used experimental data within 1\sigma. The best-fit parameters are: \Omega_{\Lambda}=0.64^{+0.14}_{-0.27}, \Omega_{m}= 0.36^{+0.21}_{-0.11}, \Omega_b=0.047^{+0.093}_{-0.024}, n_s=1.0^{+0.59}_{-0.17}, h=0.65^{+0.35}_{-0.27} and \tau_c=0.15^{+0.95}_{-0.15} (plus/minus values show 1\sigma upper/lower limits obtained by marginalization over all other model parameters). The best-fit values of \Omega_{\nu} and T/S are close to zero, their 1\sigma upper limits are 0.17 and 1.7 respectively.Comment: 34 pages, 10 figures; accepted by ApJ; some corrections in the text are made and a few references are adde

    Initial Conditions for Large Cosmological Simulations

    Full text link
    This technical paper describes a software package that was designed to produce initial conditions for large cosmological simulations in the context of the Horizon collaboration. These tools generalize E. Bertschinger's Grafic1 software to distributed parallel architectures and offer a flexible alternative to the Grafic2 software for ``zoom'' initial conditions, at the price of large cumulated cpu and memory usage. The codes have been validated up to resolutions of 4096^3 and were used to generate the initial conditions of large hydrodynamical and dark matter simulations. They also provide means to generate constrained realisations for the purpose of generating initial conditions compatible with, e.g. the local group, or the SDSS catalog.Comment: 12 pages, 11 figures, submitted to ApJ

    The X-ray Cluster Dipole

    Get PDF
    We estimate the dipole of the whole sky X-ray flux-limited sample of Abell/ACO clusters (XBACs) and compare it to the optical Abell/ACO cluster dipole. The X-ray cluster dipole is well aligned (≀25∘\le 25^{\circ}) with the CMB dipole, while it follows closely the radial profile of its optical cluster counterpart although its amplitude is ∌10−30\sim 10 - 30 per cent lower. In view of the fact that the the XBACs sample is not affected by the volume incompleteness and the projection effects that are known to exist at some level in the optical parent Abell/ACO cluster catalogue, our present results confirm the previous optical cluster dipole analysis that there are significant contributions to the Local Group motion from large distances (∌160h−1\sim 160h^{-1} Mpc). In order to assess the expected contribution to the X-ray cluster dipole from a purely X-ray selected sample we compare the dipoles of the XBACs and the Brightest Cluster Sample (Ebeling et al. 1997a) in their overlap region. The resulting dipoles are in mutual good aggreement with an indication that the XBACs sample slightly underestimates the full X-ray dipole (by ≀5\le 5 per cent) while the Virgo cluster contributes about 10 - 15 per cent to the overall X-ray cluster dipole. Using linear perturbation theory to relate the X-ray cluster dipole to the Local group peculiar velocity we estimate the density parameter to be ÎČcx≃0.24±0.05\beta_{c_{x}} \simeq 0.24 \pm 0.05.Comment: 16 pages, latex, + 4 ps figures, submitted to Ap
    • 

    corecore