1,396 research outputs found

    Numerical Analysis of the Big Bounce in Loop Quantum Cosmology

    Full text link
    Loop quantum cosmology homogeneous models with a massless scalar field show that the big-bang singularity can be replaced by a big quantum bounce. To gain further insight on the nature of this bounce, we study the semi-discrete loop quantum gravity Hamiltonian constraint equation from the point of view of numerical analysis. For illustration purposes, we establish a numerical analogy between the quantum bounces and reflections in finite difference discretizations of wave equations triggered by the use of nonuniform grids or, equivalently, reflections found when solving numerically wave equations with varying coefficients. We show that the bounce is closely related to the method for the temporal update of the system and demonstrate that explicit time-updates in general yield bounces. Finally, we present an example of an implicit time-update devoid of bounces and show back-in-time, deterministic evolutions that reach and partially jump over the big-bang singularity.Comment: 5 pages, 3 figures, new title, replaced with version accepted for publicatio

    Physical consequences of P≠\neqNP and the DMRG-annealing conjecture

    Full text link
    Computational complexity theory contains a corpus of theorems and conjectures regarding the time a Turing machine will need to solve certain types of problems as a function of the input size. Nature {\em need not} be a Turing machine and, thus, these theorems do not apply directly to it. But {\em classical simulations} of physical processes are programs running on Turing machines and, as such, are subject to them. In this work, computational complexity theory is applied to classical simulations of systems performing an adiabatic quantum computation (AQC), based on an annealed extension of the density matrix renormalization group (DMRG). We conjecture that the computational time required for those classical simulations is controlled solely by the {\em maximal entanglement} found during the process. Thus, lower bounds on the growth of entanglement with the system size can be provided. In some cases, quantum phase transitions can be predicted to take place in certain inhomogeneous systems. Concretely, physical conclusions are drawn from the assumption that the complexity classes {\bf P} and {\bf NP} differ. As a by-product, an alternative measure of entanglement is proposed which, via Chebyshev's inequality, allows to establish strict bounds on the required computational time.Comment: Accepted for publication in JSTA

    Super-Extremal Spinning Black Holes via Accretion

    Full text link
    A Kerr black hole with mass MM and angular momentum JJ satisfies the extremality inequality ∣JâˆŁâ‰€M2|J| \le M^2. In the presence of matter and/or gravitational radiation, this bound needs to be reformulated in terms of local measurements of the mass and the angular momentum directly associated with the black hole. The isolated and dynamical horizon framework provides such quasi-local characterization of black hole mass and angular momentum. With this framework, it is possible in axisymmetry to reformulate the extremality limit as ∣JâˆŁâ‰€2 MH2|J| \le 2\,M_H^2, with MHM_H the irreducible mass of the black hole computed from its apparent horizon area and JJ obtained using approximate rotational Killing vectors on the apparent horizon. The ∣JâˆŁâ‰€2 MH2|J| \le 2\,M_H^2 condition is also equivalent to requiring a non-negative black hole surface gravity. We present numerical experiments of an accreting black hole that temporarily violates this extremality inequality. The initial configuration consists of a single, rotating black hole surrounded by a thick, shell cloud of negative energy density. For these numerical experiments, we introduce a new matter-without-matter evolution method.Comment: 11 pages, 10 figure

    Why, when, and how fast innovations are adopted

    Full text link
    When the full stock of a new product is quickly sold in a few days or weeks, one has the impression that new technologies develop and conquer the market in a very easy way. This may be true for some new technologies, for example the cell phone, but not for others, like the blue-ray. Novelty, usefulness, advertising, price, and fashion are the driving forces behind the adoption of a new product. But, what are the key factors that lead to adopt a new technology? In this paper we propose and investigate a simple model for the adoption of an innovation which depends mainly on three elements: the appeal of the novelty, the inertia or resistance to adopt it, and the interaction with other agents. Social interactions are taken into account in two ways: by imitation and by differentiation, i.e., some agents will be inclined to adopt an innovation if many people do the same, but other will act in the opposite direction, trying to differentiate from the "herd". We determine the conditions for a successful implantation of the new technology, by considering the strength of advertising and the effect of social interactions. We find a balance between the advertising and the number of anti-herding agents that may block the adoption of a new product. We also compare the effect of social interactions, when agents take into account the behavior of the whole society or just a part of it. In a nutshell, the present model reproduces qualitatively the available data on adoption of innovation.Comment: 11 pages, 13 figures (with subfigures), full paper (EPJB 2012) on innovation adoption mode

    Gravitational recoil from spinning binary black hole mergers

    Get PDF
    The inspiral and merger of binary black holes will likely involve black holes with both unequal masses and arbitrary spins. The gravitational radiation emitted by these binaries will carry angular as well as linear momentum. A net flux of emitted linear momentum implies that the black hole produced by the merger will experience a recoil or kick. Previous studies have focused on the recoil velocity from unequal mass, non-spinning binaries. We present results from simulations of equal mass but spinning black hole binaries and show how a significant gravitational recoil can also be obtained in these situations. We consider the case of black holes with opposite spins of magnitude aa aligned/anti-aligned with the orbital angular momentum, with aa the dimensionless spin parameters of the individual holes. For the initial setups under consideration, we find a recoil velocity of V = 475 \KMS a. Supermassive black hole mergers producing kicks of this magnitude could result in the ejection from the cores of dwarf galaxies of the final hole produced by the collision.Comment: 8 pages, 8 figures, replaced with version accepted for publication in Ap

    Defect formation and local gauge invariance

    Get PDF
    We propose a new mechanism for formation of topological defects in a U(1) model with a local gauge symmetry. This mechanism leads to definite predictions, which are qualitatively different from those of the Kibble-Zurek mechanism of global theories. We confirm these predictions in numerical simulations, and they can also be tested in superconductor experiments. We believe that the mechanism generalizes to more complicated theories.Comment: REVTeX, 4 pages, 2 figures. The explicit form of the Hamiltonian and the equations of motion added. To appear in PRL (http://prl.aps.org/

    Moving black holes via singularity excision

    Get PDF
    We present a singularity excision algorithm appropriate for numerical simulations of black holes moving throughout the computational domain. The method is an extension of the excision procedure previously used to obtain stable simulations of single, non-moving black holes. The excision procedure also shares elements used in recent work to study the dynamics of a scalarfield in the background of a single, boosted black hole. The robustness of our excision method is tested with single black-hole evolutions using a coordinate system in which the coordinate location of the black hole, and thus the excision boundary, moves throughout the computational domain.Comment: 9 pages and 11 figure

    A multivariate time-frequency method to characterize the influence of respiration over heart period and arterial pressure

    Get PDF
    Respiratory activity introduces oscillations both in arterial pressure and heart period, through mechanical and autonomic mechanisms. Respiration, arterial pressure, and heart period are, generally, non-stationary processes and the interactions between them are dynamic. In this study we present a methodology to robustly estimate the time course of cross spectral indices to characterize dynamic interactions between respiratory oscillations of heart period and blood pressure, as well as their interactions with respiratory activity. Time-frequency distributions belonging to Cohen's class are used to estimate time-frequency (TF) representations of coherence, partial coherence and phase difference. The characterization is based on the estimation of the time course of cross spectral indices estimated in specific TF regions around the respiratory frequency. We used this methodology to describe the interactions between respiration, heart period variability (HPV) and systolic arterial pressure variability (SAPV) during tilt table test with both spontaneous and controlled respiratory patterns. The effect of selective autonomic blockade was also studied. Results suggest the presence of common underling mechanisms of regulation between cardiovascular signals, whose interactions are time-varying. SAPV changes followed respiratory flow both in supine and standing positions and even after selective autonomic blockade. During head-up tilt, phase differences between respiration and SAPV increased. Phase differences between respiration and HPV were comparable to those between respiration and SAPV during supine position, and significantly increased during standing. As a result, respiratory oscillations in SAPV preceded respiratory oscillations in HPV during standing. Partial coherence was the most sensitive index to orthostatic stress. Phase difference estimates were consistent among spontaneous and controlled breathing patterns, whereas coherence was higher in spontaneous breathing. Parasympathetic blockade did not affect interactions between respiration and SAPV, reduced the coherence between SAPV and HPV and between respiration and HPV. Our results support the hypothesis that non-autonomic, possibly mechanically mediated, mechanisms also contributes to the respiratory oscillations in HPV. A small contribution of sympathetic activity on HPV-SAPV interactions around the respiratory frequency was also observed

    Observational Signature of Tidal Disruption of a Star by a Massive Black Hole

    Full text link
    We have modeled the time-variable profiles of the Halpha emission line from the non-axisymmetric disk and debris tail created in the tidal disruption of a solar-type star by a million solar mass black hole. We find that the line profiles at these very early stages of the evolution of the post-disruption debris do not resemble the double peaked profiles expected from a rotating disk since the debris has not yet settled into such a stable structure. The predicted line profiles vary on fairly short time scales (of order hours to days). As a result of the uneven distribution of the debris and the existence of a ``tidal tail'' (the stream of returning debris), the line profiles depend sensitively on the orientation of the tail relative to the line of sight. Given the illuminating UV/X-ray light curve, we also model the Halpha light curve from the debris.Comment: 2 pages, 1 figure, to appear in the proceedings of "The Interplay among Black Holes, Stars and ISM in Galactic Nuclei", IAU 222, eds. Th. Storchi Bergmann, L.C. Ho, and H.R. Schmit

    Electroweak String Configurations with Baryon Number

    Full text link
    In the context of electroweak strings, the baryon number anomaly equation may be reinterpreted as a conservation law for baryon number minus helicity. Since the helicity is a sum of the link and twist numbers, linked or twisted loops of electroweak string carry baryon number. We evaluate the change in the baryon number obtained by delinking loops of electroweak Z−Z-string and show that twisted electroweak string segments may be regarded as extended sphalerons. We also suggest an alternative scenario for electroweak baryogenesis.Comment: 11 pages, figure available on request. Added discussion of string-sphaleron connection for non-vanishing Weinberg angle and shortened discussion on formation of linked configuration
    • 

    corecore