35 research outputs found

    Dark siren cosmology with binary black holes in the era of third-generation gravitational wave detectors

    Full text link
    Third-generation (3G) gravitational wave detectors, in particular Einstein Telescope (ET) and Cosmic Explorer (CE), will explore unprecedented cosmic volumes in search for compact binary mergers, providing us with tens of thousands of detections per year. In this study, we simulate and employ binary black holes detected by 3G interferometers as dark sirens, to extract and infer cosmological parameters by cross-matching gravitational wave data with electromagnetic information retrieved from a simulated galaxy catalog. Considering a standard Λ\LambdaCDM model, we apply a suitable Bayesian framework to obtain joint posterior distributions for the Hubble constant H0H_0 and the matter energy density parameter Ωm\Omega_m in different scenarios. Assuming a galaxy catalog complete up to z=1z=1 and dark sirens detected with a network signal-to-noise ratio greater than 300, we show that a network made of ET and two CEs can constrain H0H_0 (Ωm\Omega_m) to a promising 0.8%0.8\% (10.0%10.0\%) at 90%90\% confidence interval within one year of continuous observations. Additionally, we find that most of the information on H0H_0 is contained in local, single-host dark sirens, and that dark sirens at z>1z>1 do not substantially improve these estimates. Our results imply that a sub-percent measure of H0H_0 can confidently be attained by a network of 3G detectors, highlighting the need for characterising all systematic effects to a higher accuracy.Comment: 23 pages, 8 figures. Major update on results, updated figures, v2 accepted for publication in PR

    Bekenstein-Hod universal bound on information emission rate is obeyed by LIGO-Virgo binary black hole remnants

    Get PDF
    Causality and the generalized laws of black hole thermodynamics imply a bound, known as the Bekenstein-Hod universal bound, on the information emission rate of a perturbed system. Using a time-domain ringdown analysis, we investigate whether remnant black holes produced by the coalescences observed by Advanced LIGO and Advanced Virgo obey this bound. We find that the bound is verified by the astrophysical black hole population with 94% probability, providing a first confirmation of the Bekenstein-Hod bound from black hole systems

    Eigenvalue repulsions in the quasinormal spectra of the Kerr-Newman black hole

    Get PDF
    We study the gravito-electromagnetic perturbations of the Kerr-Newman (KN) black hole metric and identify the two - photon sphere and near-horizon - families of quasinormal modes (QNMs) of the KN black hole, computing the frequency spectra (for all the KN parameter space) of the modes with the slowest decay rate. We uncover a novel phenomenon for QNMs that is unique to the KN system, namely eigenvalue repulsion between QNM families. Such a feature is common in solid state physics where \eg it is responsible for energy bands/gaps in the spectra of electrons moving in certain Schr\"odinger potentials. Exploiting the enhanced symmetries of the near-horizon limit of the near-extremal KN geometry we also develop a matching asymptotic expansion that allows us to solve the perturbation problem using separation of variables and provides an excellent approximation to the KN QNM spectra near extremality. The KN QNM spectra here derived are required not only to account for the gravitational emission in astrophysical environments, such as the ones probed by LIGO, Virgo and LISA, but also allow to extract observational implications on several new physics scenarios, such as mini-charged dark-matter or certain modified theories of gravity, degenerate with the KN solution at the scales of binary mergers.Comment: 9 pages, 2 figure

    ICAROGW: A python package for inference of astrophysical population properties of noisy, heterogeneous and incomplete observations

    Full text link
    We present icarogw 2.0, a pure CPU/GPU python code developed to infer astrophysical and cosmological population properties of noisy, heterogeneous, and incomplete observations. icarogw 2.0 is mainly developed for compact binary coalescence (CBC) population inference with gravitational wave (GW) observations. The code contains several models for masses, spins, and redshift of CBC distributions, and is able to infer population distributions as well as the cosmological parameters and possible general relativity deviations at cosmological scales. We present the theoretical and computational foundations of icarogw, and we describe how the code can be employed for population and cosmological inference using (i) only GWs, (ii) GWs and galaxy surveys and (iii) GWs with electromagnetic counterparts. Although icarogw 2.0 has been developed for GW science, we also describe how the code can be used for any physical and astrophysical problem involving observations from noisy data in the presence of selection biases. With this paper, we also release tutorials on Zenodo.Comment: 33 pages, code available at (https://github.com/simone-mastrogiovanni/icarogw), tutorials available at (https://zenodo.org/record/7846415#.ZG0l0NJBxQo

    Joint population and cosmological properties inference with gravitational waves standard sirens and galaxy surveys

    Get PDF
    Gravitational wave (GW) sources at cosmological distances can be used to probe the expansion rate of the Universe. GWs directly provide a distance estimation of the source but no direct information on its redshift. The optimal scenario to obtain a redshift is through the direct identification of an electromagnetic (EM) counterpart and its host galaxy. With almost 100 GW sources detected without EM counterparts (dark sirens), it is becoming crucial to have statistical techniques able to perform cosmological studies in the absence of EM emission. Currently, only two techniques for dark sirens are used on GW observations; the spectral siren method, which is based on the source-frame mass distribution to estimate conjointly cosmology and the source’s merger rate, and the galaxy survey method, which uses galaxy surveys to assign a probabilistic redshift to the source while fitting cosmology. It has been recognized, however, that these two methods are two sides of the same coin. In this paper, we present a novel approach to unify these two methods. We apply this approach to several observed GW events using the glade+ galaxy catalog discussing limiting cases. We provide estimates of the Hubble constant, modified gravity propagation effects, and population properties for binary black holes. We also estimate the binary black hole merger rate per galaxy to be 10−6–10−5  yr−1 depending on the galaxy catalog hypotheses

    Cosmology with the Laser Interferometer Space Antenna

    Get PDF
    254 pags:, 44 figs.The Laser Interferometer Space Antenna (LISA) has two scientific objectives of cosmological focus: to probe the expansion rate of the universe, and to understand stochastic gravitational-wave backgrounds and their implications for early universe and particle physics, from the MeV to the Planck scale. However, the range of potential cosmological applications of gravitational-wave observations extends well beyond these two objectives. This publication presents a summary of the state of the art in LISA cosmology, theory and methods, and identifies new opportunities to use gravitational-wave observations by LISA to probe the universe.This work is partly supported by: A.G. Leventis Foundation; Academy of Finland Grants 328958 and 345070; Alexander S. Onassis Foundation, Scholarship ID: FZO 059-1/2018-2019; Amaldi Research Center funded by the MIUR program “Dipartimento di Eccellenza” (CUP: B81I18001170001); ASI Grants No. 2016-24-H.0 and No. 2016-24-H.1-2018; Atracción de Talento Grant 2019-T1/TIC-15784; Atracción de Talento contract no. 2019-T1/TIC-13177 granted by the Comunidad de Madrid; Ayuda ‘Beatriz Galindo Senior’ by the Spanish ‘Ministerio de Universidades’, Grant BG20/00228; Basque Government Grant (IT-979-16); Belgian Francqui Foundation; Centre national d’Etudes spatiales; Ben Gurion University Kreitman Fellowship, and the Israel Academy of Sciences and Humanities (IASH) & Council for Higher Education (CHE) Excellence Fellowship Program for International Postdoctoral Researchers; Centro de Excelencia Severo Ochoa Program SEV-2016-0597; CERCA program of the Generalitat de Catalunya; Cluster of Excellence “Precision Physics, Fundamental Interactions, and Structure of Matter” (PRISMA? EXC 2118/1); Comunidad de Madrid, Contrato de Atracción de Talento 2017-T1/TIC-5520; Czech Science Foundation GAČR, Grant No. 21-16583M; Delta ITP consortium; Department of Energy under Grant No. DE-SC0008541, DE-SC0009919 and DESC0019195; Deutsche Forschungsgemeinschaft (DFG), Project ID 438947057; Deutsche Forschungsgemeinschaft under Germany’s Excellence Strategy - EXC 2121 Quantum Universe - 390833306; European Structural and Investment Funds and the Czech Ministry of Education, Youth and Sports (Project CoGraDS - CZ.02.1.01/0.0/0.0/15 003/0000437); European Union’s H2020 ERC Consolidator Grant “GRavity from Astrophysical to Microscopic Scales” (Grant No. GRAMS-815673); European Union’s H2020 ERC, Starting Grant Agreement No. DarkGRA-757480; European Union’s Horizon 2020 programme under the Marie Sklodowska-Curie Grant Agreement 860881 (ITN HIDDeN); European Union’s Horizon 2020 Research and Innovation Programme Grant No. 796961, “AxiBAU” (K.S.); European Union’s Horizon 2020 Research Council grant 724659 MassiveCosmo ERC-2016-COG; FCT through national funds (PTDC/FIS-PAR/31938/2017) and through project “BEYLA – BEYond LAmbda” with Ref. Number PTDC/FIS-AST/0054/2021; FEDER-Fundo Europeu de Desenvolvimento Regional through COMPETE2020 - Programa Operacional Competitividade e Internacionalização (POCI-01-0145- FEDER-031938) and research Grants UIDB/04434/2020 and UIDP/04434/2020; Fondation CFM pour la Recherche in France; Foundation for Education and European Culture in Greece; French ANR project MMUniverse (ANR-19-CE31-0020); FRIA Grant No.1.E.070.19F of the Belgian Fund for Research, F.R. S.-FNRS Fundação para a Ciência e a Tecnologia (FCT) through Contract No. DL 57/2016/CP1364/ CT0001; Fundação para a Ciência e a Tecnologia (FCT) through Grants UIDB/04434/2020, UIDP/04434/ 2020, PTDC/FIS-OUT/29048/2017, CERN/FIS-PAR/0037/2019 and “CosmoTests – Cosmological tests of gravity theories beyond General Relativity” CEECIND/00017/2018; Generalitat Valenciana Grant PROMETEO/2021/083; Grant No. 758792, project GEODESI; Government of Canada through the Department of Innovation, Science and Economic Development and Province of Ontario through the Ministry of Colleges and Universities; Grants-in-Aid for JSPS Overseas Research Fellow (No. 201960698); I?D Grant PID2020-118159GB-C41 of the Spanish Ministry of Science and Innovation; INFN iniziativa specifica TEONGRAV; Israel Science Foundation (Grant No. 2562/20); Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Nos. 20H01899 and 20H05853; IFT Centro de Excelencia Severo Ochoa Grant SEV-2; Kavli Foundation and its founder Fred Kavli; Minerva Foundation; Ministerio de Ciencia e Innovacion Grant PID2020-113644GB-I00; NASA Grant 80NSSC19K0318; NASA Hubble Fellowship grants No. HST-HF2-51452.001-A awarded by the Space Telescope Science Institute with NASA contract NAS5-26555; Netherlands Organisation for Science and Research (NWO) Grant Number 680-91-119; new faculty seed start-up grant of the Indian Institute of Science, Bangalore, the Core Research Grant CRG/2018/002200 of the Science and Engineering; NSF Grants PHY-1820675, PHY-2006645 and PHY-2011997; Polish National Science Center Grant 2018/31/D/ ST2/02048; Polish National Agency for Academic Exchange within the Polish Returns Programme under Agreement PPN/PPO/2020/1/00013/U/00001; Pró-Reitoria de Pesquisa of Universidade Federal de Minas Gerais (UFMG) under Grant No. 28359; Ramón y Cajal Fellowship contract RYC-2017-23493; Research Project PGC2018-094773-B-C32 [MINECO-FEDER]; Research Project PGC2018-094773-B-C32 [MINECO-FEDER]; ROMFORSK Grant Project. No. 302640; Royal Society Grant URF/R1/180009 and ERC StG 949572: SHADE; Shota Rustaveli National Science Foundation (SRNSF) of Georgia (Grant FR/18-1462); Simons Foundation/SFARI 560536; SNSF Ambizione grant; SNSF professorship Grant (No. 170547); Spanish MINECO’s “Centro de Excelencia Severo Ochoa” Programme Grants SEV-2016- 0597 and PID2019-110058GB-C22; Spanish Ministry MCIU/AEI/FEDER Grant (PGC2018-094626-BC21); Spanish Ministry of Science and Innovation (PID2020-115845GB-I00/AEI/10.13039/ 501100011033); Spanish Proyectos de I?D via Grant PGC2018-096646-A-I00; STFC Consolidated Grant ST/T000732/1; STFC Consolidated Grants ST/P000762/1 and ST/T000791/1; STFC Grant ST/ S000550/1; STFC Grant ST/T000813/1; STFC Grants ST/P000762/1 and ST/T000791/1; STFC under the research Grant ST/P000258/1; Swiss National Science Foundation (SNSF), project The Non-Gaussian Universe and Cosmological Symmetries, Project Number: 200020-178787; Swiss National Science Foundation Professorship Grants No. 170547 and No. 191957; SwissMap National Center for Competence in Research; “The Dark Universe: A Synergic Multi-messenger Approach” Number 2017X7X85K under the MIUR program PRIN 2017; UK Space Agency; UKSA Flagship Project, Euclid.Peer reviewe

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF

    Search for gravitational-lensing signatures in the full third observing run of the LIGO-Virgo network

    Get PDF
    Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO--Virgo network. We search for repeated signals from strong lensing by 1) performing targeted searches for subthreshold signals, 2) calculating the degree of overlap amongst the intrinsic parameters and sky location of pairs of signals, 3) comparing the similarities of the spectrograms amongst pairs of signals, and 4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by 1) frequency-independent phase shifts in strongly lensed images, and 2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the non-detection of gravitational-wave lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects

    Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo

    Get PDF
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M>70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0<e≤0.3 at 0.33 Gpc−3 yr−1 at 90\% confidence level
    corecore