371 research outputs found
Spatial quantum correlations in multiple scattered light
We predict a new spatial quantum correlation in light propagating through a
multiple scattering random medium. The correlation depends on the quantum state
of the light illuminating the medium, is infinite range, and dominates over
classical mesoscopic intensity correlations. The spatial quantum correlation is
revealed in the quantum fluctuations of the total transmission or reflection
through the sample and should be readily observable experimentally.Comment: Reference adde
Analytical modeling of light transport in scattering materials with strong absorption
We have investigated the transport of light through slabs that both scatter
and strongly absorb, a situation that occurs in diverse application fields
ranging from biomedical optics, powder technology, to solid-state lighting. In
particular, we study the transport of light in the visible wavelength range
between and nm through silicone plates filled with YAG:Ce
phosphor particles, that even re-emit absorbed light at different wavelengths.
We measure the total transmission, the total reflection, and the ballistic
transmission of light through these plates. We obtain average single particle
properties namely the scattering cross-section , the absorption
cross-section , and the anisotropy factor using an analytical
approach, namely the P3 approximation to the radiative transfer equation. We
verify the extracted transport parameters using Monte-Carlo simulations of the
light transport. Our approach fully describes the light propagation in phosphor
diffuser plates that are used in white LEDs and that reveal a strong absorption
() up to , where is the
slab thickness, is the absorption mean free path. In
contrast, the widely used diffusion theory fails to describe this parameter
range. Our approach is a suitable analytical tool for industry, since it
provides a fast yet accurate determination of key transport parameters, and
since it introduces predictive power into the design process of white light
emitting diodes
Spatial Extent of Random Laser Modes
We have experimentally studied the distribution of the spatial extent of modes and the crossover from essentially single-mode to distinctly multimode behavior inside a porous gallium phosphide random laser. This system serves as a paragon for random lasers due to its exemplary high index contrast. In the multimode regime, we observed mode competition. We have measured the distribution of spectral mode spacings in our emission spectra and found level repulsion that is well described by the Gaussian orthogonal ensemble of random-matrix theory
Adaptive end-to-end optimization of mobile video streaming using QoS negotiation
Video streaming over wireless links is a non-trivial problem due to the large and frequent changes in the quality of the underlying radio channel combined with latency constraints. We believe that every layer in a mobile system must be prepared to adapt its behavior to its environment. Thus layers must be capable of operating in multiple modes; each mode will show a different quality and resource usage. Selecting the right mode of operation requires exchange of information between interacting layers. For example, selecting the best channel coding requires information about the quality of the channel (capacity, bit-error-rate) as well as the requirements (latency, reliability) of the compressed video stream generated by the source encoder. In this paper we study the application of our generic QoS negotiation scheme to a specific configuration for mobile video transmission. We describe the results of experiments studying the overall effectiveness, stability, and dynamics of adaptation of our distributed optimization approach
Inhibited spontaneous emission of quantum dots observed in a 3D photonic band gap
We present time-resolved emission experiments of semiconductor quantum dots
in silicon 3D inverse-woodpile photonic band gap crystals. A systematic study
is made of crystals with a range of pore radii to tune the band gap relative to
the emission frequency. The decay rates averaged over all dipole orientations
are inhibited by a factor of 10 in the photonic band gap and enhanced up to 2?
outside the gap, in agreement with theory. We discuss the effects of spatial
inhomogeneity, nonradiative decay, and transition dipole orientations on the
observed inhibition in the band gap.Comment: 5 figures, update author lis
Optical extinction due to intrinsic structural variations of photonic crystals
Unavoidable variations in size and position of the building blocks of
photonic crystals cause light scattering and extinction of coherent beams. We
present a new model for both 2 and 3-dimensional photonic crystals that relates
the extinction length to the magnitude of the variations. The predicted lengths
agree well with our new experiments on high-quality opals and inverse opals,
and with literature data analyzed by us. As a result, control over photons is
limited to distances up to 50 lattice parameters (m) in
state-of-the-art structures, thereby impeding large-scale applications such as
integrated circuits. Conversely, scattering in photonic crystals may lead to
novel physics such as Anderson localization and non-classical diffusion.Comment: 10 pages, 3 figures. Changes include: added Lagendijk as author;
simplified and generalized the tex
Exact Quantum Monte Carlo Process for the Statistics of Discrete Systems
We introduce an exact Monte Carlo approach to the statistics of discrete
quantum systems which does not rely on the standard fragmentation of the
imaginary time, or any small parameter. The method deals with discrete objects,
kinks, representing virtual transitions at different moments of time. The
global statistics of kinks is reproduced by explicit local procedures, the key
one being based on the exact solution for the biased two-level system.Comment: 4 pages, latex, no figures, English translation of the paper
Light scattering from three-level systems: The T-matrix of a point-dipole with gain
We present an extension of the T-matrix approach to scattering of light by a
three-level system, using a description based on a Master equation. More
particularly, we apply our formalism to calculate the T-matrix of a pumped
three-level atom, providing an exact and analytical expression describing the
influence of a pump on the light scattering properties of an atomic three-level
system
A multiple-scattering approach to interatomic interactions and superradiance in inhomogeneous dielectrics
The dynamics of a collection of resonant atoms embedded inside an
inhomogeneous nondispersive and lossless dielectric is described with a dipole
Hamiltonian that is based on a canonical quantization theory. The dielectric is
described macroscopically by a position-dependent dielectric function and the
atoms as microscopic harmonic oscillators. We identify and discuss the role of
several types of Green tensors that describe the spatio-temporal propagation of
field operators. After integrating out the atomic degrees of freedom, a
multiple-scattering formalism emerges in which an exact Lippmann-Schwinger
equation for the electric field operator plays a central role. The equation
describes atoms as point sources and point scatterers for light. First,
single-atom properties are calculated such as position-dependent
spontaneous-emission rates as well as differential cross sections for elastic
scattering and for resonance fluorescence. Secondly, multi-atom processes are
studied. It is shown that the medium modifies both the resonant and the static
parts of the dipole-dipole interactions. These interatomic interactions may
cause the atoms to scatter and emit light cooperatively. Unlike in free space,
differences in position-dependent emission rates and radiative line shifts
influence cooperative decay in the dielectric. As a generic example, it is
shown that near a partially reflecting plane there is a sharp transition from
two-atom superradiance to single-atom emission as the atomic positions are
varied.Comment: 18 pages, 4 figures, to appear in Physical Review
- âŠ