127 research outputs found
Enhanced Resolution of Poly-(Methyl Methacrylate) Electron Resist by Thermal Processing
Granular nanostructure of electron beam resist had limited the ultimate
resolution of electron beam lithography. We report a thermal process to achieve
a uniform and homogeneous amorphous thin film of poly methyl methacrylate
electron resist. This thermal process consists of a short time-high temperature
backing process in addition to precisely optimized development process
conditions. Using this novel process, we patterned arrays of holes in a metal
film with diameter smaller than 5nm. In addition, line edge roughness and
surface roughness of the resist reduced to 1nm and 100pm respectively.Comment: 8 pages, 4 figure
Transverse magnetic mode nonreciprocal propagation in an amplifying AlGaInAs/InP optical waveguide isolator.
International audienceThe design, fabrication, and characterization of an amplifying transverse magnetic Í‘TMÍ’-mode optical waveguide isolator operating at a wavelength of 1300 nm are presented. The magneto-optical Kerr effect induces nonreciprocal modal absorption in a semiconductor optical amplifier with a laterally magnetized ferromagnetic metal contact. Current injection in the active structure compensates for the loss in the forward propagation direction. Monolithic integration of this optical isolator configuration with active InP-based photonic devices is straightforward. The combination of AlGaInAs/ InP active material and the metal alloy Co 50 Fe 50 results in greatly improved performance. 99 dB/ cm TM mode isolation and significantly reduced insertion loss are demonstrated
Local solid-state modification of nanopore surface charges
The last decade, nanopores have emerged as a new and interesting tool for the
study of biological macromolecules like proteins and DNA. While biological
pores, especially alpha-hemolysin, have been promising for the detection of
DNA, their poor chemical stability limits their use. For this reason,
researchers are trying to mimic their behaviour using more stable, solid-state
nanopores. The most successful tools to fabricate such nanopores use high
energy electron or ions beams to drill or reshape holes in very thin membranes.
While the resolution of these methods can be very good, they require tools that
are not commonly available and tend to damage and charge the nanopore surface.
In this work, we show nanopores that have been fabricated using standard
micromachning techniques together with EBID, and present a simple model that is
used to estimate the surface charge. The results show that EBID with a silicon
oxide precursor can be used to tune the nanopore surface and that the surface
charge is stable over a wide range of concentrations.Comment: 10 pages, 6 figure
Boosting the Figure Of Merit of LSPR-based refractive index sensing by phase-sensitive measurements
Localized surface plasmon resonances possess very interesting properties for
a wide variety of sensing applications. In many of the existing applications
only the intensity of the reflected or transmitted signals is taken into
account, while the phase information is ignored. At the center frequency of a
(localized) surface plasmon resonance, the electron cloud makes the transition
between in- and out-of-phase oscillation with respect to the incident wave.
Here we show that this information can experimentally be extracted by
performing phase-sensitive measurements, which result in linewidths that are
almost one order of magnitude smaller than those for intensity based
measurements. As this phase transition is an intrinsic property of a plasmon
resonance, this opens up many possibilities for boosting the figure of merit
(FOM) of refractive index sensing by taking into account the phase of the
plasmon resonance. We experimentally investigated this for two model systems:
randomly distributed gold nanodisks and gold nanorings on top of a continuous
gold layer and a dielectric spacer and observed FOM values up to 8.3 and 16.5
for the respective nanoparticles
A novel approach to analyze lysosomal dysfunctions through subcellular proteomics and lipidomics : the case of NPC1 deficiency
Superparamagnetic iron oxide nanoparticles (SPIONs) have mainly been used as cellular carriers for genes and therapeutic products, while their use in subcellular organelle isolation remains underexploited. We engineered SPIONs targeting distinct subcellular compartments. Dimercaptosuccinic acid-coated SPIONs are internalized and accumulate in late endosomes/lysosomes, while aminolipid-SPIONs reside at the plasma membrane. These features allowed us to establish standardized magnetic isolation procedures for these membrane compartments with a yield and purity permitting proteomic and lipidomic profiling. We validated our approach by comparing the biomolecular compositions of lysosomes and plasma membranes isolated from wild-type and Niemann-Pick disease type C1 (NPC1) deficient cells. While the accumulation of cholesterol and glycosphingolipids is seen as a primary hallmark of NPC1 deficiency, our lipidomics analysis revealed the buildup of several species of glycerophospholipids and other storage lipids in selectively late endosomes/lysosomes of NPC1-KO cells. While the plasma membrane proteome remained largely invariable, we observed pronounced alterations in several proteins linked to autophagy and lysosomal catabolism reflecting vesicular transport obstruction and defective lysosomal turnover resulting from NPC1 deficiency. Thus the use of SPIONs provides a major advancement in fingerprinting subcellular compartments, with an increased potential to identify disease-related alterations in their biomolecular compositions
- …