160 research outputs found

    A Family of Quantum Stabilizer Codes Based on the Weyl Commutation Relations over a Finite Field

    Get PDF
    Using the Weyl commutation relations over a finite field we introduce a family of error-correcting quantum stabilizer codes based on a class of symmetric matrices over the finite field satisfying certain natural conditions. When the field is GF(2) the existence of a rich class of such symmetric matrices is demonstrated by a simple probabilistic argument depending on the Chernoff bound for i.i.d symmetric Bernoulli trials. If, in addition, these symmetric matrices are assumed to be circulant it is possible to obtain concrete examples by a computer program. The quantum codes thus obtained admit elegant encoding circuits.Comment: 16 pages, 2 figure

    Regeneration of Cryoinjury Induced Necrotic Heart Lesions in Zebrafish Is Associated with Epicardial Activation and Cardiomyocyte Proliferation

    Get PDF
    In mammals, myocardial cell death due to infarction results in scar formation and little regenerative response. In contrast, zebrafish have a high capacity to regenerate the heart after surgical resection of myocardial tissue. However, whether zebrafish can also regenerate lesions caused by cell death has not been tested. Here, we present a simple method for induction of necrotic lesions in the adult zebrafish heart based on cryoinjury. Despite widespread tissue death and loss of cardiomyocytes caused by these lesions, zebrafish display a robust regenerative response, which results in substantial clearing of the necrotic tissue and little scar formation. The cellular mechanisms underlying regeneration appear to be similar to those activated in response to ventricular resection. In particular, the epicardium activates a developmental gene program, proliferates and covers the lesion. Concomitantly, mature uninjured cardiomyocytes become proliferative and invade the lesion. Our injury model will be a useful tool to study the molecular mechanisms of natural heart regeneration in response to necrotic cell death

    Emergency department documentation templates: variability in template selection and association with physical examination and test ordering in dizziness presentations

    Get PDF
    Abstract Background Clinical documentation systems, such as templates, have been associated with process utilization. The T-System emergency department (ED) templates are widely used but lacking are analyses of the templates association with processes. This system is also unique because of the many different template options available, and thus the selection of the template may also be important. We aimed to describe the selection of templates in ED dizziness presentations and to investigate the association between items on templates and process utilization. Methods Dizziness visits were captured from a population-based study of EDs that use documentation templates. Two relevant process outcomes were assessed: head computerized tomography (CT) scan and nystagmus examination. Multivariable logistic regression was used to estimate the probability of each outcome for patients who did or did not receive a relevant-item template. Propensity scores were also used to adjust for selection effects. Results The final cohort was 1,485 visits. Thirty-one different templates were used. Use of a template with a head CT item was associated with an increase in the adjusted probability of head CT utilization from 12.2% (95% CI, 8.9%-16.6%) to 29.3% (95% CI, 26.0%-32.9%). The adjusted probability of documentation of a nystagmus assessment increased from 12.0% (95%CI, 8.8%-16.2%) when a nystagmus-item template was not used to 95.0% (95% CI, 92.8%-96.6%) when a nystagmus-item template was used. The associations remained significant after propensity score adjustments. Conclusions Providers use many different templates in dizziness presentations. Important differences exist in the various templates and the template that is used likely impacts process utilization, even though selection may be arbitrary. The optimal design and selection of templates may offer a feasible and effective opportunity to improve care delivery.http://deepblue.lib.umich.edu/bitstream/2027.42/112490/1/12913_2010_Article_1586.pd

    Ultrafast entangling gates between nuclear spins using photo-excited triplet states

    Full text link
    The representation of information within the spins of electrons and nuclei has been powerful in the ongoing development of quantum computers. Although nuclear spins are advantageous as quantum bits (qubits) due to their long coherence lifetimes (exceeding seconds), they exhibit very slow spin interactions and have weak polarisation. A coupled electron spin can be used to polarise the nuclear spin and create fast single-qubit gates, however, the permanent presence of electron spins is a source of nuclear decoherence. Here we show how a transient electron spin, arising from the optically excited triplet state of C60, can be used to hyperpolarise, manipulate and measure two nearby nuclear spins. Implementing a scheme which uses the spinor nature of the electron, we performed an entangling gate in hundreds of nanoseconds: five orders of magnitude faster than the liquid-state J coupling. This approach can be widely applied to systems comprising an electron spin coupled to multiple nuclear spins, such as NV centres, while the successful use of a transient electron spin motivates the design of new molecules able to exploit photo-excited triplet states.Comment: 5 pages, 3 figure

    Implantation of Mouse Embryonic Stem Cell-Derived Cardiac Progenitor Cells Preserves Function of Infarcted Murine Hearts

    Get PDF
    Stem cell transplantation holds great promise for the treatment of myocardial infarction injury. We recently described the embryonic stem cell-derived cardiac progenitor cells (CPCs) capable of differentiating into cardiomyocytes, vascular endothelium, and smooth muscle. In this study, we hypothesized that transplanted CPCs will preserve function of the infarcted heart by participating in both muscle replacement and neovascularization. Differentiated CPCs formed functional electromechanical junctions with cardiomyocytes in vitro and conducted action potentials over cm-scale distances. When transplanted into infarcted mouse hearts, CPCs engrafted long-term in the infarct zone and surrounding myocardium without causing teratomas or arrhythmias. The grafted cells differentiated into cross-striated cardiomyocytes forming gap junctions with the host cells, while also contributing to neovascularization. Serial echocardiography and pressure-volume catheterization demonstrated attenuated ventricular dilatation and preserved left ventricular fractional shortening, systolic and diastolic function. Our results demonstrate that CPCs can engraft, differentiate, and preserve the functional output of the infarcted heart

    Spleen Vagal Denervation Inhibits the Production of Antibodies to Circulating Antigens

    Get PDF
    BACKGROUND: Recently the vagal output of the central nervous system has been shown to suppress the innate immune defense to pathogens. Here we investigated by anatomical and physiological techniques the communication of the brain with the spleen and provided evidence that the brain has the capacity to stimulate the production of antigen specific antibodies by its parasympathetic autonomic output. METHODOLOGY/PRINCIPAL FINDINGS: This conclusion was reached by successively demonstrating that: 1. The spleen receives not only sympathetic input but also parasympathetic input. 2. Intravenous trinitrophenyl-ovalbumin (TNP-OVA) does not activate the brain and does not induce an immune response. 3. Intravenous TNP-OVA with an inducer of inflammation; lipopolysaccharide (LPS), activates the brain and induces TNP-specific IgM. 4. LPS activated neurons are in the same areas of the brain as those that provide parasympathetic autonomic information to the spleen, suggesting a feed back circuit between brain and immune system. Consequently we investigated the interaction of the brain with the spleen and observed that specific parasympathetic denervation but not sympathetic denervation of the spleen eliminates the LPS-induced antibody response to TNP-OVA. CONCLUSIONS/SIGNIFICANCE: These findings not only show that the brain can stimulate antibody production by its autonomic output, it also suggests that the power of LPS as adjuvant to stimulate antibody production may also depend on its capacity to activate the brain. The role of the autonomic nervous system in the stimulation of the adaptive immune response may explain why mood and sleep have an influence on antibody production

    Do schools differ in suicide risk? the influence of school and neighbourhood on attempted suicide, suicidal ideation and self-harm among secondary school pupils

    Get PDF
    <br>Background: Rates of suicide and poor mental health are high in environments (neighbourhoods and institutions) where individuals have only weak social ties, feel socially disconnected and experience anomie - a mismatch between individual and community norms and values. Young people spend much of their time within the school environment, but the influence of school context (school connectedness, ethos and contextual factors such as school size or denomination) on suicide-risk is understudied. Our aim is to explore if school context is associated with rates of attempted suicide and suicide-risk at age 15 and self-harm at age 19, adjusting for confounders.</br> <br>Methods: A longitudinal school-based survey of 1698 young people surveyed when aged 11, (primary school), 15 (secondary school) and in early adulthood (age 19). Participants provided data about attempted suicide and suicide-risk at age 15 and deliberate self-harm at 19. In addition, data were collected about mental health at age 11, social background (gender, religion, etc.), and at age 15, perception of local area (e.g. neighbourhood cohesion, safety/civility and facilities), school connectedness (school engagement, involvement, etc.) and school context (size, denomination, etc.). A dummy variable was created indicating a religious 'mismatch', where pupils held a different faith from their school denomination. Data were analysed using multilevel logistic regression.</br> <br>Results: After adjustment for confounders, pupils attempted suicide, suicide-risk and self-harm were all more likely among pupils with low school engagement (15-18% increase in odds for each SD change in engagement). While holding Catholic religious beliefs was protective, attending a Catholic school was a risk factor for suicidal behaviours. This pattern was explained by religious 'mismatch': pupils of a different religion from their school were approximately 2-4 times more likely to attempt suicide, be a suicide-risk or self-harm.</br> <br>Conclusions: With several caveats, we found support for the importance of school context for suicidality and self-harm. School policies promoting school connectedness are uncontroversial. Devising a policy to reduce risks to pupils holding a different faith from that of their school may be more problematic.</br&gt

    The Level of Protein in Milk Formula Modifies Ileal Sensitivity to LPS Later in Life in a Piglet Model

    Get PDF
    Background: Milk formulas have higher protein contents than human milk. This high protein level could modify the development of intestinal microbiota, epithelial barrier and immune functions and have long-term consequences. Methodology/Principal findings: We investigated the effect of a high protein formula on ileal microbiota and physiology during the neonatal period and later in life. Piglets were fed from 2 to 28 days of age either a normoprotein (NP, equivalent to sow milk) or a high protein formula (HP, +40% protein). Then, they received the same solid diet until 160 days. During the formula feeding period ileal microbiota implantation was accelerated in HP piglets with greater concentrations of ileal bacteria at d7 in HP than NP piglets. Epithelial barrier function was altered with a higher permeability to small and large probes in Ussing chambers in HP compared to NP piglets without difference in bacterial translocation. Infiltration of T cells was increased in HP piglets at d28. IL-1b and NF-kappa B sub-units mRNA levels were reduced in HP piglets at d7 and d28 respectively; plasma haptoglobin also tended to be reduced at d7. Later in life, pro-inflammatory cytokines secretion in response to high doses of LPS in explants culture was reduced in HP compared to NP piglets. Levels of mRNA coding the NF-kappa B pathway sub-units were increased by the challenge with LPS in NP piglets, but not HP ones. Conclusions/Significance: A high protein level in formula affects the postnatal development of ileal microbiota, epithelial barrier and immune function in piglets and alters ileal response to inflammatory mediators later in life

    Epicardial cells derived from human embryonic stem cells augment cardiomyocyte-driven heart regeneration.

    Get PDF
    The epicardium and its derivatives provide trophic and structural support for the developing and adult heart. Here we tested the ability of human embryonic stem cell (hESC)-derived epicardium to augment the structure and function of engineered heart tissue in vitro and to improve efficacy of hESC-cardiomyocyte grafts in infarcted athymic rat hearts. Epicardial cells markedly enhanced the contractility, myofibril structure and calcium handling of human engineered heart tissues, while reducing passive stiffness compared with mesenchymal stromal cells. Transplanted epicardial cells formed persistent fibroblast grafts in infarcted hearts. Cotransplantation of hESC-derived epicardial cells and cardiomyocytes doubled graft cardiomyocyte proliferation rates in vivo, resulting in 2.6-fold greater cardiac graft size and simultaneously augmenting graft and host vascularization. Notably, cotransplantation improved systolic function compared with hearts receiving either cardiomyocytes alone, epicardial cells alone or vehicle. The ability of epicardial cells to enhance cardiac graft size and function makes them a promising adjuvant therapeutic for cardiac repair.: This work was supported by the British Heart Foundation (BHF; Grants NH/11/1/28922, G1000847, FS/13/29/30024 and FS/18/46/33663), Oxford-Cambridge Centre for Regenerative Medicine (RM/13/3/30159), the UK Medical Research Council (MRC) and the Cambridge Hospitals National Institute for Health Research Biomedical Research Centre funding (SS), as well as National Institutes of Health Grants P01HL094374, P01GM081619, R01HL12836 and a grant from the Fondation Leducq Transatlantic Network of Excellence (CEM). J.B. was supported by a Cambridge National Institute for Health Research Biomedical Research Centre Cardiovascular Clinical Research Fellowship and subsequently, by a BHF Studentship (Grant FS/13/65/30441). DI received a University of Cambridge Commonwealth Scholarship. LG is supported by BHF Award RM/l3/3/30159 and LPO is funded by a Wellcome Trust Fellowship (203568/Z/16/Z). NF was supported by BHF grants RG/13/14/30314. NL was supported by the Biotechnology and Biological Sciences Research Council (Institute Strategic Programmes BBS/E/B/000C0419 and BBS/E/B/000C0434). SS and MB were supported by the British Heart Foundation Centre for Cardiovascular Research Excellence. Core support was provided by the Wellcome-MRC Cambridge Stem Cell Institute (203151/Z/16/Z), The authors thank Osiris for provision of the primary mesenchymal stem cells (59
    corecore