23 research outputs found

    Eco-evolutionary control of pathogens

    Get PDF
    Control can alter the eco-evolutionary dynamics of a target pathogen in two ways, by changing its population size and by directed evolution of new functions. Here, we develop a pay-off model of eco-evolutionary control based on strategies of evolution, regulation, and computational forecasting. We apply this model to pathogen control by molecular antibody-antigen binding with a tunable dosage of antibodies. By analytical solu-tion, we obtain optimal dosage protocols and establish a phase diagram with an error threshold delineating parameter regimes of successful and compromised control. The solution identifies few independently measurable fitness parameters that predict the outcome of control. Our analysis shows how optimal con-trol strategies depend on mutation rate and population size of the pathogen, and how monitoring and computational forecast-ing affect protocols and efficiency of control. We argue that these results carry over to more general systems and are elements of an emerging eco-evolutionary control theory.Peer reviewe

    Oral capecitabine in gemcitabine-pretreated patients with advanced pancreatic cancer

    Get PDF
    Objective: To date, no standard regimen for salvage chemotherapy after gemcitabine (Gem) failure has been defined for patients with advanced pancreatic cancer (PC). Oral capecitabine (Cap) has shown promising activity in first-line chemotherapy trials in PC patients. Methods: Within a prospective single-center study, Cap was offered to patients who had already received at least 1 previous treatment regimen containing full-dose Gem (as a single agent, as part of a combination chemotherapy regimen or sequentially within a chemoradiotherapy protocol). Cap was administered orally at a dose of 1,250 mg/m(2) twice daily for 14 days followed by 7 days of rest. Study endpoints were objective tumor response rate by imaging criteria (according to RECIST), carbohydrate antigen 19-9 (CA19-9) tumor marker response, time to progression, overall survival and toxicity. Results: A median of 3 treatment cycles (range 1-36) was given to 39 patients. After a median follow-up of 6.6 months, 27 patients were evaluable for response: no complete or partial responses were observed, but 15 patients (39%) had stable disease. A CA19-9 reduction of >20% after 2 cycles of Cap was documented in 6 patients (15%). Median time to progression was 2.3 months (range 0.5-45.1) and median overall survival (since start of Cap treatment) was 7.6 months (range 0.7-45.1). Predominant grade 2 and 3 toxicities (per patient analysis) were hand-foot syndrome 28% (13% grade 3); anemia 23%; leg edema 15%; diarrhea 13%; nausea/vomiting 10%, and leukocytopenia 10%. Conclusion: Single-agent Cap is a safe treatment option for Gem-pretreated patients with advanced PC. Further evaluation of Cap in controlled clinical trials of Gem-pretreated patients with advanced PC is recommended. Copyright (C) 2008 S. Karger AG, Basel

    Identification of regulatory variants associated with genetic susceptibility to meningococcal disease.

    Get PDF
    Non-coding genetic variants play an important role in driving susceptibility to complex diseases but their characterization remains challenging. Here, we employed a novel approach to interrogate the genetic risk of such polymorphisms in a more systematic way by targeting specific regulatory regions relevant for the phenotype studied. We applied this method to meningococcal disease susceptibility, using the DNA binding pattern of RELA - a NF-kB subunit, master regulator of the response to infection - under bacterial stimuli in nasopharyngeal epithelial cells. We designed a custom panel to cover these RELA binding sites and used it for targeted sequencing in cases and controls. Variant calling and association analysis were performed followed by validation of candidate polymorphisms by genotyping in three independent cohorts. We identified two new polymorphisms, rs4823231 and rs11913168, showing signs of association with meningococcal disease susceptibility. In addition, using our genomic data as well as publicly available resources, we found evidences for these SNPs to have potential regulatory effects on ATXN10 and LIF genes respectively. The variants and related candidate genes are relevant for infectious diseases and may have important contribution for meningococcal disease pathology. Finally, we described a novel genetic association approach that could be applied to other phenotypes

    Clonal Interference in the Evolution of Influenza

    Get PDF
    The seasonal influenza A virus undergoes rapid evolution to escape human immune response. Adaptive changes occur primarily in antigenic epitopes, the antibody-binding domains of the viral hemagglutinin. This process involves recurrent selective sweeps, in which clusters of simultaneous nucleotide fixations in the hemagglutinin coding sequence are observed about every 4 years. Here, we show that influenza A (H3N2) evolves by strong clonal interference. This mode of evolution is a red queen race between viral strains with different beneficial mutations. Clonal interference explains and quantifies the observed sweep pattern: we find an average of at least one strongly beneficial amino acid substitution per year, and a given selective sweep has three to four driving mutations on average. The inference of selection and clonal interference is based on frequency time series of single-nucleotide polymorphisms, which are obtained from a sample of influenza genome sequences over 39 years. Our results imply that mode and speed of influenza evolution are governed not only by positive selection within, but also by background selection outside antigenic epitopes: immune adaptation and conservation of other viral functions interfere with each other. Hence, adapting viral proteins are predicted to be particularly brittle. We conclude that a quantitative understanding of influenza's evolutionary and epidemiological dynamics must be based on all genomic domains and functions coupled by clonal interference

    A predictive fitness model for influenza

    No full text
    The seasonal human influenza A/H3N2 virus undergoes rapid evolution, which produces significant year-to-year sequence turnover in the population of circulating strains. Adaptive mutations respond to human immune challenge and occur primarily in antigenic epitopes, the antibody-binding domains of the viral surface protein haemagglutinin. Here we develop a fitness model for haemagglutinin that predicts the evolution of the viral population from one year to the next. Two factors are shown to determine the fitness of a strain: adaptive epitope changes and deleterious mutations outside the epitopes. We infer both fitness components for the strains circulating in a given year, using population-genetic data of all previous strains. From fitness and frequency of each strain, we predict the frequency of its descendent strains in the following year. This fitness model maps the adaptive history of influenza A and suggests a principled method for vaccine selection. Our results call for a more comprehensive epidemiology of influenza and other fast-evolving pathogens that integrates antigenic phenotypes with other viral functions coupled by genetic linkage

    Survival of the simplest in microbial evolution

    No full text
    The evolution of microbial and viral organisms often generates clonal interference, a mode of competition between genetic clades within a population. Here we show how interference impacts systems biology by constraining genetic and phenotypic complexity. Our analysis uses biophysically grounded evolutionary models for molecular phenotypes, such as fold stability and enzymatic activity of genes. We find a generic mode of phenotypic interference that couples the function of individual genes and the population's global evolutionary dynamics. Biological implications of phenotypic interference include rapid collateral system degradation in adaptation experiments and long-term selection against genome complexity: each additional gene carries a cost proportional to the total number of genes. Recombination above a threshold rate can eliminate this cost, which establishes a universal, biophysically grounded scenario for the evolution of sex. In a broader context, our analysis suggests that the systems biology of microbes is strongly intertwined with their mode of evolution

    Predicting evolution

    No full text
    The face of evolutionary biology is changing: from reconstructing and analysing the past to predicting future evolutionary processes. Recent developments include prediction of reproducible patterns in parallel evolution experiments, forecasting the future of individual populations using data from their past, and controlled manipulation of evolutionary dynamics. Here we undertake a synthesis of central concepts for evolutionary predictions, based on examples of microbial and viral systems, cancer cell populations, and immune receptor repertoires. These systems have strikingly similar evolutionary dynamics driven by the competition of clades within a population. These dynamics are the basis for models that predict the evolution of clade frequencies, as well as broad genetic and phenotypic changes. Moreover, there are strong links between prediction and control, which are important for interventions such as vaccine or therapy design. All of these are key elements of what may become a predictive theory of evolution

    Stochasticity of infectious outbreaks and consequences for optimal interventions

    No full text
    Global strategies to contain a pandemic, such as social distancing and protective measures, are designed to reduce the overall transmission rate between individuals. Despite such measures, essential institutions, including hospitals, schools, and food producing plants, remain focal points of local outbreaks. Here we develop a model for the stochastic infection dynamics that predicts the statistics of local outbreaks from observables of the underlying global epidemics. Specifically, we predict two key outbreak characteristics: the probability of proliferation from a first infection in the local community, and the establishment size, which is the threshold size of local infection clusters where proliferation becomes likely. We derive these results using a contact network model of communities, and we show how the proliferation probability depends on the contact degree of the first infected individual. Based on this model, we suggest surveillance protocols by which individuals are tested proportionally to their degree in the contact network. We characterize the efficacy of contact-based protocols as a function of the epidemiological and the contact network parameters, and we show numerically that such protocols outperform random testing

    Metabolic fitness landscapes predict the evolution of antibiotic resistance

    No full text
    This study develops metabolic fitness models that integrate drug action with evolutionary response to predict growth rates of resistance mutations and prevalent mechanisms of antibiotic resistance in Escherichia coli. Bacteria evolve resistance to antibiotics by a multitude of mechanisms. A central, yet unsolved question is how resistance evolution affects cell growth at different drug levels. Here, we develop a fitness model that predicts growth rates of common resistance mutants from their effects on cell metabolism. The model maps metabolic effects of resistance mutations in drug-free environments and under drug challenge; the resulting fitness trade-off defines a Pareto surface of resistance evolution. We predict evolutionary trajectories of growth rates and resistance levels, which characterize Pareto resistance mutations emerging at different drug dosages. We also predict the prevalent resistance mechanism depending on drug and nutrient levels: low-dosage drug defence is mounted by regulation, evolution of distinct metabolic sectors sets in at successive threshold dosages. Evolutionary resistance mechanisms include membrane permeability changes and drug target mutations. These predictions are confirmed by empirical growth inhibition curves and genomic data of Escherichia coli populations. Our results show that resistance evolution, by coupling major metabolic pathways, is strongly intertwined with systems biology and ecology of microbial populations
    corecore