Eco-evolutionary control of pathogens

Abstract

Control can alter the eco-evolutionary dynamics of a target pathogen in two ways, by changing its population size and by directed evolution of new functions. Here, we develop a pay-off model of eco-evolutionary control based on strategies of evolution, regulation, and computational forecasting. We apply this model to pathogen control by molecular antibody-antigen binding with a tunable dosage of antibodies. By analytical solu-tion, we obtain optimal dosage protocols and establish a phase diagram with an error threshold delineating parameter regimes of successful and compromised control. The solution identifies few independently measurable fitness parameters that predict the outcome of control. Our analysis shows how optimal con-trol strategies depend on mutation rate and population size of the pathogen, and how monitoring and computational forecast-ing affect protocols and efficiency of control. We argue that these results carry over to more general systems and are elements of an emerging eco-evolutionary control theory.Peer reviewe

    Similar works