1,609 research outputs found
An LU-fuzzy calculator for the basic fuzzy calculus
The LU-model for fuzzy numbers has been introduced in [4] and applied to fuzzy calculus in [9]; in this paper we build an LU-fuzzy calculator, in order to explain the use of the LU-fuzzy representation and to show the advantage of the parametrization. The calculator produces the basic fuzzy calculus: the arithmetic operations (scalar multiplication, addition, subtraction, multiplica- tion, division) and the fuzzy extension of many univariate functions (power with integer positive or negative exponent, exponential , logarithm, general power function with numeric or fuzzy exponent, sin, arcsin, cos, arccos, tan, arctan, square root, Gaussian and standard Gaussian functions, hyperbolic sinh, cosh, tanh and inverses, erf error function and complementary erfc error function, cu- mulative standard normal distribution). The use of the calculator is illustrated.Fuzzy Sets, LU-fuzzy Calculator, Fuzzy Calculus
Representing fuzzy numbers for fuzzy calculus
In this paper we illustrate the LU representation of fuzzy numbers and present an LU-fuzzy calculator, in order to explain the use of the LU-fuzzy model and to show the advantage of the parametrization. The model can be applied either in the level-cut or in generalized LR frames. The hand-like fuzzy calculator has been developed for the MSWindows platform and produces the basic fuzzy calculus: the arithmetic operations (scalar multiplication, addition, subtraction, multiplication, division) and the fuzzy extension of many univariate functions (exponential, logarithm, power with numeric or fuzzy exponent, sin, arcsin, cos, arccos, tan, arctan, square root, Gaussian, hyperbolic sinh, cosh, tanh and inverses, erf and erfc error functions, cumulative standard normal distribution).Fuzzy Sets, LU-fuzzy Calculator, Fuzzy Calculus, Parametric LU represemtation
Inibiçâo intelectual na matemática: interconexôes entre psicanálise e neuropsicologia
O objetivo desse trabalho foi analisar a noção de inibição intelectual e suas representações psicanalÃtica, bem como neuropsicológicas para compreender os quadros sintomáticos de desinteresse pelas aulas de Matemática a partir de casos encontrados na investigação de Fonseca (2011). As análises se fundamentaram nos princÃpios psicanalÃticos de Klein (1968), os pressupostos neuropsicológicos de Luria (1981) e a proposta sobre Matemática Emocional de Chacón (2003) defendendo a importância de considerar os afetos para o desenvolvimento da aprendizagem Matemática. Analisamos a trajetória histórica das funções trigonométricas, três livros didáticos, a sequência didática proposta e, por último, um quadro diagnóstico dos comportamentos manifestos
- …