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Abstract

The LU-model for fuzzy numbers has been introduced in [4] and applied to
fuzzy calculus in [9]; in this paper we build an LU-fuzzy calculator, in order
to explain the use of the LU-fuzzy representation and to show the advantage
of the parametrization. The calculator produces the basic fuzzy calculus: the
arithmetic operations (scalar multiplication, addition, subtraction, multiplica-
tion, division) and the fuzzy extension of many univariate functions (power with
integer positive or negative exponent, exponential , logarithm, general power
function with numeric or fuzzy exponent, sin, arcsin, cos, arccos, tan, arctan,
square root, Gaussian and standard Gaussian functions, hyperbolic sinh, cosh,
tanh and inverses, erf error function and complementary erfc error function, cu-
mulative standard normal distribution). The use of the calculator is illustrated.

1 Introduction

The arithmetic operations on fuzzy numbers are usually approached either by
the use of the extension principle (in the domain of the membership function)
or by the interval arithmetics (in the domain of the �� cuts):
The exact analytical fuzzy mathematics dates back from the early eighties

and are outlined by Dubois and Prade (see [1]); the same authors have intro-
duced the well known L-R model and the corresponding formulas for the fuzzy
operations (see [2]).
Very recent literature on fuzzy numbers is rich of contributions on the fuzzy

arithmetic operations and the use of simple formulas to approximate them; an
extensive survey and bibliography on fuzzy intervals is in [3].
We suggest in [4] the use of monotonic splines to approximate the fuzzy

numbers, using several interpolation forms (monotonic rational interpolators
and mixed cubic-exponential interpolator) and we derive a procedure to control
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the locations of the nodes so that the error of the approximation is controlled
by the possible insertion of additional nodes into the piecewise interpolation.
We see that, with only a few nodes, our approximations of fuzzy calculus

maintain accurate results. The parametric LU representation of the fuzzy num-
bers allows a set of possible shapes (types of membership functions) that seems
to be much wider than the well-known L-R framework.
The paper is organized as follows: section 2 contains a brief description of

the fuzzy calculus; in section 3 we describe the LU-fuzzy model and in section
4 we describe the detailed algorithms which implement the LU-fuzzy extension
principle. Section 5 contains the description of the LU-fuzzy calculator.

2 Basic fuzzy calculus

We adopt the so called a� cut setting for the de�nition of a fuzzy number:

De�nition 1 A continuous fuzzy number (or interval) u is any pair (u�; u+)
of functions u� : [0; 1] �! R satisfying the following conditions:
(i) u� : � �! u�� 2 R is a bounded monotonic increasing (non decreasing)
continuous function 8� 2 [0; 1] ;
(ii) u+ : � �! u+� 2 R is a bounded monotonic decreasing (non increasing)
continuous function 8� 2 [0; 1] ;
(iii) u�� � u+� 8� 2 [0; 1] :
If u�1 < u

+
1 we have a fuzzy interval and if u

�
1 = u

+
1 we have a fuzzy number.

The notation:
u� =

�
u�� ; u

+
�

�
denotes explicitly the �� cuts of u. We will also refer to u� and u+ as the left
(lower) and the right (upper) branches on u, respectively.
If u = (u�; u+) and v = (v�; v+) are two given fuzzy numbers, the arithmetic

operations are de�ned as follows:

De�nition 2 (Addition)

u+ v =
�
u� + v�; u+ + v+

�
or, in terms of �� cuts , for � 2 [0; 1] :

(u+ v)� =
�
u�� + v

�
� ; u

+
� + v

+
�

�
(1)

De�nition 3 (Scalar Multiplication)
For given k 2 R �

ku = (ku�; ku+) if k > 0
ku = (ku+; ku�) if k < 0

or, for � 2 [0; 1] :

(ku)� =
�
min

�
ku�� ; ku

+
�

	
;max

�
ku�� ; ku

+
�

	�
(2)
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Figure 1: The �� cut representation of a general fuzzy interval.

In particular, if k = �1, we obtain:

�u =
�
�u+;�u�

�
with the �� cuts :

(�u)� =
�
�u+� ;�u��

�
, � 2 [0; 1]

De�nition 4 (Subtraction)

u� v = u+ (�v) =
�
u� � v+; u+ � v�

�
or, in terms of the �� cuts :

(u� v)� =
�
u�� � v+� ; u+� � v��

�
, � 2 [0; 1] (3)

De�nition 5 (Multiplication)

uv =
�
(uv)

�
; (uv)

+
�

where, 8� 2 [0; 1] :�
(uv)

�
� = min fu�� v�� ; u�� v+� ; u+�v�� ; u+�v+� g

(uv)
+
� = max fu�� v�� ; u�� v+� ; u+�v�� ; u+�v+� g

(4)
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De�nition 6 (Division)
If 0 =2

�
v�0 ; v

+
0

�
:

u

v
=

��u
v

��
;
�u
v

�+�
where, 8� 2 [0; 1] : 8<:

�
u
v

��
�
= min

n
u��
v��
;
u��
v+�
;
u+�
v��
;
u+�
v+�

o
�
u
v

�+
�
= max

n
u��
v��
;
u��
v+�
;
u+�
v��
;
u+�
v+�

o (5)

We denote by F the set of the fuzzy numbers/intervals.

3 Basic LU-fuzzy calculus

The parametric LU representation of a fuzzy number is de�ned on a decompo-
sition of the interval [0; 1]

0 = �0 < �1 < ::::: < �i�1 < �i < :::: < �N = 1

for both the lower u�(�) and the upper u+(�) branches of the fuzzy numbers
involved. In each of the N subintervals

Ii = [�i�1; �i] , i = 1; 2; :::; N

the values of the two functions

u�(�i�1) = u�0;i , u
+(�i�1) = u

+
0;i

u�(�i) = u�1;i , u
+(�i) = u

+
1;i

and of their �rst derivatives

u0�(�i�1) = d�0;i , u
0+(�i�1) = d

+
0;i

u0�(�i) = d�1;i , u
0+(�i) = d

+
1;i

are assumed to be known; we are interested in families of monotonic functions
that satisfy the above eight Hermite-type conditions for each subinterval Ii. In
general, by the use of the following transformation of each subinterval Ii into
the standard [0; 1] interval,

t� =
�� �i�1
�i � �i�1

; � 2 Ii; (6)

we can determine each piece independently and obtain the general left-continuous
LU-fuzzy numbers.
Globally continuous or more regular C(1) fuzzy numbers can be obtained

directly from the data if the following conditions are met for the values:

u�1;i = u
�
0;i+1 , u+1;i = u

+
0;i+1 for i = 1; 2; :::; N � 1
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and possibly for the slopes

d�1;i = d
�
0;i+1 , d+1;i = d

+
0;i+1 for i = 1; 2; :::; N � 1:

Let pi (t) denotes the approximation of u� on a generic subinterval Ii of the
��decomposition, with the transformation t = ���i�1

�i��i�1 ; so that each subinterval
is re-mapped to the standard interval [0; 1] by

pi (t) = u(�i�1 + t(�i � �i�1)) (7)

p0i (t) = u0(�i�1 + t(�i � �i�1))(�i � �i�1):

For simplicity of notation, we omit the subscript i and we refer to Ii = [0; 1] i.e.
to the two-point Hermite interpolation problem of determining the monotonic
function p (t), t 2 [0; 1], such that

p(0) = u0 , p0(0) = d0 , p(1) = u1 , p0(1) = d1: (8)

If u0 � u1 (i.e. the data are increasing) then d0 � 0 and d1 � 0 are required
and, if u0 � u1 (i.e. the data are decreasing) then d0 � 0 and d1 � 0 are
required. In particular, u0 = u1 , d0 = d1 = 0:

We will use the notation (m;n)-rational to mean the ratio P (t)
Q(t) of an m-

degree polynomial P (t) to an n-degree polynomial Q(t):

3.1 Quadratic/quadratic rational spline

The Delbourgo and Gregory (2,2)-rational monotonic spline has the following
form:

p (t) =

�P (t)
Q(t) if u1 6= u0
u0 if u1 = u0

;

where

P (t) = (u1 � u0)u1t2 + (u0d1 + u1d0) t(1� t) + (u1 � u0)u0 (1� t)2 (9)
Q(t) = (u1 � u0) t2 + (d1 + d0) t(1� t) + (u1 � u0) (1� t)2 :

Without any additional parameters, the function above satis�es the Hermite
interpolation conditions at the points t = 0 and t = 1.

3.2 Cubic/linear rational spline

The Shrivastava and Joseph (3,1)-rational monotonic spline is given by p (t) =
P (t)
Q(t) ;where

P (t) = vu0 (1� t)3 + wu1t3 + [(2v + w)u0 + vd0] t (1� t)2 (10)

+ [(v + 2w)u1 � wd1] t2 (1� t)
Q(t) = v + (w � v) t
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with v; w > 0 and w � v: If v = w we obtain the ordinary cubic spline.
A choice of the tension parameters v and w that guarantees the global

monotonicity of p on [0; 1] is

v

w
� d1 � u1 + u0
u1 � u0 � d0

so that a simple choice may be, for example, v = 1 and

w = max

�
u1 � u0 � d0
d1 � (u1 � u0)

;
1

1� �

�
� 1

where � is a nonnegative small number, say � 2 [0; :1].

3.3 Cubic/quadratic rational spline

The (3,2)-rational form is suggested by Gregory

p (t) =
P (t)

Q(t)
with (11)

P (t) = u0 (1� t)3 + (wu0 + d0) t (1� t)2 + (wu1 � d1) t2 (1� t) + u1t3

Q(t) = 1 + t (1� t) (w � 3)

and a choice for the tension parameter w � 0 to have global monotonicity is
w = d0+d1

u1�u0 ; obtaining the ordinary cubic spline if w = 3.

3.4 Cubic/cubic rational spline

The (3,3)-rational spline has been proposed by Sarfraz

p (t) =
P (t)

Q(t)
with (12)

P (t) = u0 (1� t)3 + (vu0 + d0) t (1� t)2 + (wu1 � d1) t2 (1� t) + u1t3

Q(t) = (1� t)3 + vt (1� t)2 + wt2(1� t) + t3

with v = r d0+d1u1�u0 and w = s
d0+d1
u1�u0 , r; s � 1: If v = w then (12) becomes (11).

3.5 Mixed cubic-exponential interpolation

The monotonic Hermite-type interpolator is based on a mixed cubic-exponential
spline; in its simpler form, it is given by

p(t) = u0 + (u1 � u0 �
d0 + d1
a

)t2(3� 2t) +

+
d0
a
� d0
a
(1� t)a + d1

a
ta
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where a = 1+w � d0+d1
u1�u0 � 0 to have monotonicity. We use w =

d0+d1
u1�u0 � 0 or,

to work with integer exponents, w = int( d0+d1u1�u0 ).
The linear case (i.e. triangular fuzzy numbers) is obtained by putting d0 =

d1 = u1�u0 and a = 3: it is easy to see that the model becomes p(t) = u0+d0t:
If the data are quadratic, i.e. d0 + d1 = 2(u1 � u0); then a = 3 and the model
becomes quadratic, p(t) = u0 + d0t+ (d1 � u1 + u0)t2.

3.6 Parametrization and fuzzy operations

If the slopes d0 and d1 are not available, we can proceed by choosing them such
that, for a given positive integer n; d0+ d1 = n(u1�u0): In particular, if we �x
an integer n and a parameter � 2 [0; 1], we can select (provided that u1�u0 6= 0)�

d0 = n(1� �)(u1 � u0)
d1 = n�(u1 � u0)

(13)

so that d0 + d1 = n(u1 � u0) and a = n+ 1: If � = 0 or � = 1 the model gives
two extreme shapes having d0 = 0 or d1 = 0:
Using one of the previous forms to represent the lower and the upper branches

of the fuzzy number u = (u�; u+) we can write the general form of the repre-
sentation

u = (u�0;i; d
�
0;i; u

�
1;i; d

�
1;i;u

+
0;i; d

+
0;i; u

+
1;i; d

+
1;i)i=1;:::;N

m
u� = [pi(t�;u

�
0;i;

ed�0;i; u�1;i; ed�1;i); pi(t�;u+0;i; ed+0;i; u+1;i; ed+1;i)]i=1;2;:::;N (14)

where the functions pi(t�;u
�
0;i;

ed�0;i; u�1;i; ed�1;i) and pi(t�;u+0;i; ed+0;i; u+1;i; ed+1;i) are
obtained by monotonic models, with edk;i = dk;i(�i � �i�1), i = 0; 1 and t� =
���i�1
�i��i�1 for � 2 [�i�1; �i]. For N � 1 we have a total of 8N parameters u�0;1 �
u�1;1 � u�0;2 � u�1;2 � ::: � u�0;N � u

�
1;N , d

�
k;i � 0 de�ning the increasing lower

branch u�� and u
+
0;1 � u+1;1 � u+0;2 � u+1;2 � ::: � u+0;N � u

+
1;N , d

+
k;i � 0 de�ning

the decreasing upper branch u+� (obviously, also u
�
1;N � u

+
1;N is required).

A simpli�cation of (14) can be obtained by requiring continuous or dif-
ferentiable branches; in the �rst case, u�1;i = u�0;i+1 and u

+
1;i = u+0;i+1 for

i = 1; 2; :::; N�1 while, to have di¤erentiability, also the conditions d�k;i = d
�
k;i+1,

d+k;i = d+k;i+1 are required. For the two cases we then have 6N + 2 or 4N + 4
parameters, respectively.
In the stricly monotonic case, the membership function �(x) of the LU-

fuzzy number u, given by the equations �(u�� ) = �(u
+
� ) = � for � 2 [0; 1]; is the

following.

�(x) = 0 if x =2 [u�0 ; u+0 ] (15)

= � if x = u�� or x = u
+
� for a given � 2 [0; 1[

= 1 if x 2 [u�1 ; u+1 ]:
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In particular, corresponding to the nodes of the ��decomposition,

�(u�i ) = �(u
+
i ) = �i for i = 0; 1; :::; N

and, for the di¤erentiable case (the general piecewise di¤erentiable case is sim-
ilar)

�0(u�i ) =
1

d�i
; �0(u+i ) =

1

d+i
for i = 0; 1; :::; N:

In the applications to fuzzy calculus described in [9] we consider only the dif-
ferentiable case, for which we use the representation:

u = (u�i ; d
�
i ; u

+
i ; d

+
i )i=0;1;:::;N (16)

with the data

u�0 � u�1 � ::: � u�N � u
+
N � u

+
N�1 � ::: � u

+
0 (17)

and the slopes
d�i � 0; d

+
i � 0: (18)

By the Lower-Upper representations we can de�ne corresponding spaces of
fuzzy numbers, on which the standard operations and metrics can be introduced
by the use of the standard fuzzy calculus.
Denote by FN =

�
uj u = (u�0;i; d

�
0;i; u

�
1;i; d

�
1;i;u

+
0;i; d

+
0;i; u

+
1;i; d

+
1;i)i=1;:::;N

	
or,

in the di¤erentiable case, bFN =
�
uj u = (u�i ; d

�
i ; u

+
i ; d

+
i )i=0;1;:::;N

	
the set of

LU-fuzzy numbers. bFN is a 4(N + 1)-dimensional space.
Given two LU-fuzzy numbers

u = (u�i ; d
�
i ; u

+
i ; d

+
i )i=0;1;:::;N and v = (v�i ; e

�
i ; v

+
i ; e

+
i )i=0;1;:::;N

the arithmetic operators associated to the LU representation can be obtained
easily.
The addition is de�ned by:

u+ v = (u�i + v
�
i ; d

�
i + e

�
i ; u

+
i + v

+
i ; d

+
i + e

+
i )i=0;1;:::;N :

The scalar multiplication is de�ned as follows:
if k � 0 then

ku = (ku�i ; kd
�
i ; ku

+
i ; kd

+
i )i=0;1;:::;N ;

if k < 0 then

ku = (ku+i ; kd
+
i ; ku

�
i ; kd

�
i )i=0;1;:::;N :

In particular, if k = �1, we have

�u = (�u+i ;�d
+
i ;�u

�
i ;�d

�
i )i=0;1;:::;N
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and the subtraction is de�ned by

u� v = u+ (�v):

For the fuzzy multiplication we introduce an easy to implement algorithm,
based of the applications of the exact fuzzy multiplication at the nodes of the
��subdivision; de�ne

(uv)
�
i = minfu

�
i v

�
i ; u

�
i v

+
i ; u

+
i v

�
i ; u

+
i v

+
i g (19)

(uv)
+
i = maxfu

�
i v

�
i ; u

�
i v

+
i ; u

+
i v

�
i ; u

+
i v

+
i g (20)

and set the following:

uv =
�
w�i ; f

�
i ; w

+
i ; f

+
i

�
i=0;1;:::;N

To implement the multiplication we can proceed as follows: let (p�i ; q
�
i )

be the pair associated to the combination of superscripts + and � giving the
minimum (uv)

�
i in (19), and similarly let (p+i ; q

+
i ) the pair associated to the

combination of + and � giving the maximum (uv)
+
i in (20); then we obtain:

w�i = u
p�i
i v

q�i
i and w+i = u

p+i
i v

q+i
i

f�i = d
p�i
i v

q�i
i + u

p�i
i e

q�i
i and f+i = d

p+i
i v

q+i
i + u

p+i
i e

q+i
i

where we use the product derivative rule to obtain the new slopes.
Analogous formulas can be deduced for the division:

u=v =
�
z�i ; g

�
i ; z

+
i ; g

+
i

�
i=0;1;:::;N

(u=v)
�
i = minfu�i =v

�
i ; u

�
i =v

+
i ; u

+
i =v

�
i ; u

+
i =v

+
i g and (21)

(u=v)
+
i = maxfu�i =v

�
i ; u

�
i =v

+
i ; u

+
i =v

�
i ; u

+
i =v

+
i g.

Let (r�i ; s
�
i ) be the pair associated to the combination of + and � giving

the minimum in (u=v)�i and similarly let (r
+
i ; s

+
i ) be the pair associated to the

combination of + and � giving the maximum in (u=v)+i ; then it follows:

z�i = u
r�i
i =v

s�i
i and z+i = u

r+i
i =v

s+i
i

g�i = (d
r�i
i v

s�i
i � u

r�i
i e

s�i
i )=(v

s�i
i )

2 and g+i = (d
r+i
i v

s+i
i � u

r+i
i e

s+i
i )=(v

s+i
i )

2:

We note explicitly that the scalar multiplication is always reproduced exactly
in all the models for all � 2 [0; 1] but, in general, this is not true for the addition
as the sum of rational or mixed functions is not a rational or a mixed function
of the same orders.
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As pointed out by the results of the experimentation reported in [4], the
operations above are exact at the nodes �i of the representation and have very
small global errors on [0; 1]: Further, it is easy to control the error by introducing
additional nodes into the representation or by using a su¢ ciently high number
of nodes with max f�i � �i�1g su¢ ciently small. To control the error of the
approximation, we can proceed by increasing the number N + 1 of points; a
possible strategy is to double the number of points by using N = 2K and by
moving automatically to N = 2K+1 if a better precision is necessary.
For all the computations, as in [4], the illustrated algorithms are immediate

to implement and also a standard spreadsheet can be used. The results in [4]
of the parametric operators have shown that both the rational (12) and the
mixed (??) models perform very well, with a percentage average error for a
single multiplication and division of the order of 0:1%:

4 Fuzzy extension of univariate functions

In the general form the LU-representation can be written as:

X =
�
�i; x

�
i ; �x

�
i ; x

+
i ; �x

+
i

�
i=0;1;:::;N

where the nodes �i of the representation are shown explicitly (the symbol � is
used to denote the slopes).
The fuzzy extension of a single (real) variable (di¤erentiable) function f :

R! R to a fuzzy argument u� = [u�� ; u+� ] has �� cuts

f (u)� = [min ff (x) j x 2 u�g ;max ff (x) j x 2 u�g] : (22)

Note that if f is monotonic increasing we obtain f (u)� = [f (u
�
� ) ; f (u

+
� )] while,

if f is monotonic decreasing, f (u)� = [f (u
+
� ) ; f (u

�
� )] :

For this speci�c case, we introduce a notation similar to the one used for
multiplication or division: let p�� ; p

+
� 2 f�;+g be de�ned as follows

p�� =

�
� if min ff (u�� ) ; f (u+� )g = f (u�� )
+ if min ff (u�� ) ; f (u+� )g = f (u+� )

p+� =

�
� if max ff (u�� ) ; f (u+� )g = f (u�� )
+ if max ff (u�� ) ; f (u+� )g = f (u+� )

We simplify p��i � p
�
i
, i = 0; 1; :::; N; in the points of the ��decomposition. So,

we have f(u)�� = f
�
u
p��
�

�
and f(u)+� = f

�
u
p+�
�

�
: If X is the LU-fuzzy number

X =
�
x�i ; D

�
i ; x

+
i ; D

+
i

�
i=0;1;:::;N

then its image f(X) is

f(X) =
�
�i; f(x

p�i
i ); f

0(x
p�i
i )D

p�i
i ; f(x

p+i
i ); f

0(x
p+i
i )D

p+i
i

�
i=0;1;:::N

:

The case of the fuzzy extension of a nonmonotonic function is handled in
a similar way. In this case, the points where the minimum and the maximum
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values (22) are taken, can be internal to the interval u� or coincident with one
of the extremal values. In the last case, the �� cut of the extension is obtained
as described above. Let

f(X) =
�
�i; f

�
i ; �f

�
i ; f

�
i ; �f

+
i

�
i=0;1;:::N

denote the fuzzy extension in the general case and suppose that the function
f is di¤erentiable. If the minimum value, de�ning the lower branch f (u)�i , is
taken at an internal point x�i 2]u

�
i ; u

+
i [) , then

f�i = f(x
�
i ) and �f�i = 0;

if the maximun value, de�ning the upper branch f (u)+i , is taken at an internal
point x+i 2]u

�
i ; u

+
i [) , then

f+i = f(x
+
i ) and �f+i = 0:

The details for the fuzzy extensions of the basic elementary functions and
some special functions of particular interest are given in the rest of this section.
In some computations, we require a big constant to represent in�nity (posi-

tive or negative): we denote it as BIG and in our computations we use BIG=1000.

4.1 Fuzzy extension of X ! Xn

(the input are the fuzzy X and a positive integer n � 2):
Denote

Y = Xn

within the LU-representation framework

Y =
�
�i; Y

�
i ; �Y

�
i ; Y

+
i ; �Y

+
i

�
i=0;1;:::;N

case 1.n = 3; 5; ::: (odd)
For each i = 0; 1; :::; N 8>>><>>>:

Y �i =
�
X�
i

�n
�Y �i = n

�
X�
i

�n�1
�X�

i

Y +i =
�
X+
i

�n
�Y +i = n

�
X+
i

�n�1
�X+

i

11



case 2. n = 2; 4; ::: (even)
For each i = 0; 1; :::; N8>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>:

If x�i � 0 then

8>>><>>>:
Y �i =

�
X�
i

�n
Y +i =

�
X+
i

�n
�Y �i = n

�
X�
i

�n�1
�X�

i

�Y +i = n
�
X+
i

�n�1
�X+

i

else if x+i � 0 then

8>>><>>>:
Y �i =

�
X+
i

�n
Y +i =

�
X�
i

�n
�Y �i = n

�
X+
i

�n�1
�X+

i

�Y +i = n
�
X�
i

�n�1
�X�

i

else

8>>>>>>>><>>>>>>>>:

Y �i = 0
�Y �i = 0

if
��x�i �� � ��x+i ��

8>>>><>>>>:
then

(
Y +i =

�
X+
i

�n
�Y +i = n

�
X+
i

�n�1
�X+

i

else

(
Y +i =

�
X�
i

�n
�Y +i = n

�
X�
i

�n�1
�X�

i

4.2 Fuzzy extension of X ! X�n = 1
Xn

(the input are the non-zero fuzzy X and a positive integer n � 1): Validity test
can be stated as follows: X is non-zero if either X�

0 > 0 or X+
0 < 0; in other

words it means that 0 =2
�
x�0 ; x

+
0

�
Denote

Y =
�
�i; Y

�
i ; �Y

�
i ; Y

+
i ; �Y

+
i

�
i=0;1;:::;N

with
Y = X�n

case 1. n = 1; 3; 5; ::: (odd)
For each i = 0; 1; :::; N 8>>>>><>>>>>:

Y �i = 1

(X+
i )

n

�Y �i = � n

(X+
i )

n+1 �X
+
i

Y +i = 1

(X�
i )

n

�Y +i = � n

(X�
i )

n+1 �X
�
i

12



case 2. n = 2; 4; ::: (even)
For each i = 0; 1; :::; N8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

If x�i > 0 then

8>>>>><>>>>>:

Y �i = 1

(X+
i )

n

Y +i = 1

(X�
i )

n

�Y �i = � n

(X+
i )

n+1 �X
+
i

�Y +i = � n

(X�
i )

n+1 �X
�
i

If x+i < 0 then

8>>>>><>>>>>:

Y �i = 1

(X�
i )

n

Y +i = 1

(X+
i )

n

�Y �i = � n

(X�
i )

n+1 �X
�
i

�Y +i = � n

(X+
i )

n+1 �X
+
i

4.3 Fuzzy extension of X ! exp (X)

(the input is the fuzzy X):
Validity test can be stated as follows: X is non-zero if either X�

0 > 0 or
X+
0 < 0; in other words it means that 0 =2

�
x�0 ; x

+
0

�
: Let

Y = exp (X)

For each i = 0; 1; :::; N 8>><>>:
Y �i = exp

�
X�
i

�
Y +i = exp

�
X+
i

�
�Y �i =

�
exp

�
X�
i

�� �
�X�

i

�
�Y +i =

�
exp

�
X+
i

�� �
�X+

i

�
4.4 Fuzzy extension of X ! ln (X)

(the input is the positive fuzzy X): Validity test: X�
0 > 0. Let

Y = ln (X)

For each i = 0; 1; :::; N 8>>>><>>>>:
Y �i = ln

�
X�
i

�
Y +i = ln

�
X+
i

�
�Y �i =

�X�
i

X�
i

�Y +i =
�X+

i

X+
i

4.5 Fuzzy extension of (X; Y )! XY

(the input are the positive fuzzy X and the fuzzy Y ):
We use the de�nition

XY = exp (Y ln ((X)))

13



and we compute
Z = XY

by the sequence of operations:

(i) (natural logarithm) Z  � ln (X)
(ii) (standard multiplication) Z  � Y Z
(iii) (exponential) Z  � exp (Z)

4.6 Fuzzy extension of X ! sin (X)

on the invertibility domain (the input is the fuzzy X with support in
�
��2 ;

�
2

�
):

Validity test: ��2 � X
�
0 � X+

0 � �
2

Let
Y = sin (X)

For each i = 0; 1; :::; N 8>><>>:
Y �i = sin

�
X�
i

�
Y +i = sin

�
X+
i

�
�Y �i = cos

�
X�
i

�
�X�

i

�Y +i = cos
�
X+
i

�
�X�

i

4.7 Fuzzy extension of X ! arc sin (X)

(the input is the fuzzy X with support in [�1; 1]):
Validity test: �1 � X�

0 � X+
0 � 1

Let
Y = arc sin (X)

For each i = 0; 1; :::; N; (if necessary, use the constant BIG)8>>>>>>>><>>>>>>>>:

Y �i = arc sin
�
X�
i

�
Y +i = arc sin

�
X+
i

�
�Y �i =

(
+BIG if X�

i = �1 orX
�
i = +1

1p
1�X�

i

�X�
i if � 1 < X�

i < 1

�Y +i =

(
�BIG if X+

i = �1 orX
+
i = +1

1p
1�X+

i

�X+
i if � 1 < X+

i < 1

4.8 Fuzzy extension of X ! cos (X)

on the invertibility domain (the input is the fuzzy X with support in [0; �]):
Validity test: 0 � X�

0 � X+
0 � �

Let
Y = cos (X)

14



For each i = 0; 1; :::; N 8>><>>:
Y �i = cos

�
X+
i

�
Y +i = cos

�
X�
i

�
�Y �i = � sin

�
X+
i

�
�X+

i

�Y +i = � sin
�
X�
i

�
�X�

i

4.9 Fuzzy extension of X ! arccos (X)

(the input is the fuzzy X with support in [�1; 1]):
Validity test: �1 � X�

0 � X+
0 � 1

Let
Y = arccos (X)

For each i = 0; 1; :::; N;8>>>>>>>>><>>>>>>>>>:

Y �i = arccos
�
X+
i

�
Y +i = arccos

�
X�
i

�
�Y �i =

(
BIG if X+

i = �1 orX
+
i = +1

��X+
ip

1�X+
i

if � 1 < X+
i < 1

�Y +i =

( �BIG if X�
i = �1 orX

�
i = +1

��X�
ip

1�X�
i

if � 1 < X�
i < 1

4.10 Fuzzy extension of X ! tan (X)

(the input is the fuzzy X with support in ]� �
2 ;

�
2 [):

Validity test: -�2 < X
�
0 � X+

0 <
�
2

Let
Y = tan (X)

For each i = 0; 1; :::; N8>><>>:
Y �i = tan

�
X�
i

�
Y +i = tan

�
X+
i

�
�Y �i =

�
1 + tan2

�
X�
i

��
�X�

i

�Y +i =
�
1 + tan2

�
X+
i

��
�X+

i

4.11 Fuzzy extension of X ! arctan (X)

(the input is the fuzzy X with support in R):
Let

Y = arctan (X)

15



For each i = 0; 1; :::; N; 8>>>>><>>>>>:

Y �i = arctan
�
X�
i

�
Y +i = arctan

�
X+
i

�
�Y �i =

�X�
i

1+(X�
i )

2

�Y +i =
�X+

i

1+(X+
i )

2

4.12 Fuzzy extension of X !
p
X

(the input is the non negative fuzzy X):
Validity test: X�

0 � 0
Let

Y =
p
X

For each i = 0; 1; :::; N8>>>>>>>>>><>>>>>>>>>>:

Y �i =
q
X�
i

Y +i =
q
X+
i

�Y �i =
�X�

i

2
p
X�
i

=

(
BIG if X�

i = 0
�X�

i

2Y �
i

if X�
i > 0

�Y �i =
�X+

i

2
p
X+
i

=

(
BIG if X+

i = 0
�X+

i

2Y +
i

if X+
i > 0

4.13 Fuzzy extension of X ! X�

(the input are the positive fuzzy X and the real �):
We use the de�nition

X� = exp (� ln (X))

and we compute
Y = X�

by the sequence of three steps:

(i) (logarithm) Y  � ln (X)
(ii) (scalar multiplication) Y  � �Y
(iii) (exponential) Y  � exp (Y )

4.14 Fuzzy extension of X ! e�X
2

(the input is the fuzzy X):
The computation

Y = exp
�
�X2

�
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can be done by following three steps:

(square power function) (i)Y = X2

(opposite) (ii)Y  � �Y
(exponential) (iii)Y  � exp (Y )

4.15 Fuzzy extension of the Gauss standard function

X ! 1p
2�
e�

X2

2

(the input is the fuzzy X):
The computation can be done by following four steps:

(square power function) (i)Y = X2

(negative scalar multiplication) (ii)Y  � � 12Y
(exponential) (iii)Y  � exp (Y )
(scalar multiplication) (iv)Y  � 1p

2�
Y

4.16 Fuzzy extension of the hyperbolic sinusoidal function

X ! sinh(X)
(the input is the fuzzy X):

Let

Y = sinh (X) =
eX � e�X

2

For each i = 0; 1; :::; N8>>>>>><>>>>>>:

Y �i =
�
eX

�
i � e�X�

i

�
=2

Y +i =
�
eX

+
i � e�X+

i

�
=2

�Y �i = �X�
i

�
eX

�
i � e�X�

i

�
=2

�Y +i = �X+
i

�
eX

+
i � e�X+

i

�
=2

4.17 Fuzzy extension of the hyperbolic cosinusoidal func-
tion

X ! cosh(X)
(the input is the fuzzy X):

Let

Y = cosh (X) =
eX + e�X

2

17



For each i = 0; 1; :::; N :

if X+
i � 0 then

8>><>>:
Y �i = cosh

�
X+
i

�
Y +i = cosh

�
X�
i

�
�Y �i = �X+

i sinh
�
X+
i

�
�Y +i = �X�

i sinh
�
X�
i

�
else if X+

i � 0 then

8>><>>:
Y �i = cosh

�
X�
i

�
Y +i = cosh

�
X+
i

�
�Y �i = �X�

i sinh
�
X�
i

�
�Y +i = �X+

i sinh
�
X+
i

�
else

8>>>><>>>>:
Y �i = 1 , �Y �i = 0

if abs(X�
i ) � abs(X

+
i )

then
�

Y +i = cosh
�
X�
i

�
�Y +i = �X�

i sinh
�
X�
i

�
else

�
Y +i = cosh

�
X+
i

�
�Y +i = �X+

i sinh
�
X+
i

�
4.18 Fuzzy extension of the hyperbolic tangentoid func-

tion

X ! tanh(X)
(the input is the fuzzy X):

Let

Y = tanh (X)

and

tanh(x) =
sinh (x)

cosh (x)
=
ex � e�x
ex + e�x

For each i = 0; 1; :::; N 8>><>>:
Y �i = tanh

�
X�
i

�
Y +i = tanh

�
X+
i

�
�Y �i = �X�

i = cosh
2
�
X�
i

�
�Y +i = �X+

i = cosh
2
�
X+
i

�
4.19 Fuzzy extension of the inverse hyperbolic sinusoidal

function

X ! sinh�1(X):
(the input is the fuzzy X):

Note that

sinh�1(x) = ln
�
x+

p
1 + x2

�
d

dx
sinh�1 (x) =

1p
1 + x2

18



For each i = 0; 1; :::; N 8>>>><>>>>:
Y �i = sinh�1

�
X�
i

�
Y +i = sinh�1

�
X+
i

�
�Y �i = �X�

i =

q
1 +

�
X�
i

�2
�Y +i = �X+

i =

q
1 +

�
X+
i

�2
4.20 Fuzzy extension of the inverse hyperbolic cosinusoidal

function

X ! cosh�1(X):
(the input is the fuzzy x; with support � 1 and the validity test is x0 � 1):

Note that

cosh�1(x) = ln
�
x+

p
x2 � 1

�
, x � 1

d

dx
cosh�1 (x) =

1p
x2 � 1

For each i = 0; 1; :::; N8>>>><>>>>:
Y �i = cosh�1

�
X�
i

�
Y +i = cosh�1

�
X+
i

�
�Y �i = �X�

i =

q�
X�
i

�2 � 1 (if X�
i = 1 then �Y

�
i = BIG)

�Y +i = �X+
i =

q�
X+
i

�2 � 1 (if X+
i = 1 then �Y

+
i = �BIG)

4.21 Fuzzy extension of the inverse hyperbolic tangentoid
function

X ! tanh�1(X):
(the input is the fuzzy x; with support in ]�1; 1[ and the validity test is

�1 < x�0 � x+0 < 1):
Note that

tanh�1(x) =
1

2
ln

�
1 + x

1� x

�
; x 2 ]�1; 1[

d

dx
tan�1 (x) =

1

1� x2

For each i = 0; 1; :::; N 8>>>><>>>>:
Y �i = tan�1

�
X�
i

�
Y +i = tan�1

�
X+
i

�
�Y �i = �X�

i =
�
1�

�
X�
i

�2�
�Y +i = �X+

i =
�
1�

�
X+
i

�2�
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4.22 Fuzzy extension of the erf and erfc error functions

x ! erf(x) =
2p
�

xZ
0

exp
�
�t2

�
dt = (increasing)

= 1� 2p
�

+1Z
x

exp
�
�t2

�
dt =

= 1� erf c (x)

with

erf c (x) =
2

�

+1Z
x

exp
�
�t2

�
dt (decreasing)

For the erf c function we use the following approximation, with a fractional error
less then 1.2�10�7

z = abs (x)

t =
1

1 + 1
2z

and

erf c =

8<: t exp
�
�z2 + p (t)

�
if x � 0

2� t exp
�
�z2 + p (t)

�
if x < 0

where (Korner rule)

p (t) = a0+ t (a1 + t (a2 + t (a3 + t (a4 + t (a5 + t (a6 + t (a7 + t (a8 + ta9))))))))

and the coe¢ cients assume the following values

a0 = �1:26551223 a5 = 0:27886807
a1 = 1:00002368 a6 = �1:13520398
a2 = 0:37409196 a7 = 1:48851587
a3 = 0:09678418 a8 = �0:82215223
a4 = �0:18628806 a9 = 0:17087277

Let
Y = erf (X)

For each i = 0; 1; :::; N 8>>><>>>:
Y �i = erf

�
X�
i

�
Y +i = erf

�
X+
i

�
�Y �i = �X�

i
2p
�
exp

�
�X�

i

�2
�Y +i = �X+

i
2p
�
exp

�
�X+

i

�2
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Let now
Y = erf c (X)

For each i = 0; 1; :::; N8>>><>>>:
Y �i = erf c

�
X+
i

�
Y +i = erf c

�
X�
i

�
�Y �i = ��X+

i
2p
�
exp

�
�X+

i

�2
�Y +i = ��X�

i
2p
�
exp

�
�X�

i

�2
4.23 Fuzzy extension of the cumulative standard normal

distribution function

� (x) =
1p
2�

xZ
�1

exp

�
� t

2

2

�
dt

The function � (x) ; x 2 R, can be approximated by the following procedure:

� (x) =

8>><>>:
1
2

�
1 + erf

�
xp
2

��
if x � 0

1
2

�
1� erf

�
� xp

2

��
if x < 0

Let
Y = �(X) with X fuzzy

For each i = 0; 1; :::; N 8>>>><>>>>:
Y �i = �

�
X�
i

�
Y +i = �

�
X+
i

�
�Y �i = �X�

i
1p
2�
exp(

�X�2
i

2 )

�Y +i = �x+i
1p
2�
exp(

�X+2
i

2 )

5 Implementation of the LU-fuzzy calculator

To implement the LU-fuzzy calculator, we have written a windows-based frame
similar to a standard hand-calculator.
Figure 2 shows a panoramic view of the calculator; from left to right we can

see the grids of the fuzzy numbers X, Y and Z. Z is the result of the operations
while X and/or Y are the operands. For each element u 2 fX;Y; Zgthe grid
contains the values �i; u

�
i ; �u

�
i ; u

+
i and �u

+
i respectively. To start the calcu-

lations, we have implemented a set of prede�ned types, including triangular,
trapezoidal, exponential, gamma, ect. For a given type, it is possible to de�ne
the number N of subintervals (N + 1 points) in the uniform ��decomposition.
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General window of the LU-fuzzy calculator

The calculations are performed by clicking the button of the corresponding
operation. The left group of buttons involves the binary operations (see �gure
3.)

Binary operations and assignments

The second group of operators (see �gure 4.) require the assigment of either
X or Y to the temporary K (see �gure 5) and operate on K itself putting the
result into Z.

Extension of univariate functions
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Selection of the argument for fuzzy extension functions

It is possible to save a given (X, Y or Z) temporary result into a stored list (Put
in List button), by assigning a name to it; a saved fuzzy number can be reloaded
either in X or Y for further use (Get from List button). The Plot button (see
�gure 6.) opens a popup window with the graph of the membership function of
the corresponding fuzzy number.

Buttons to Plot, Put into List and Get from saved List

Figure 7. illustrates how to select a fuzzy number from a list of prede�ned types.

Selection of prede�ned types of fuzzy nymbers

To obtain the graphs or other representations, one of the models described in
section 3. can be selected (�gure 8.).

Choosing the monotonic spline model
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We illustrate an example to show how the calculator works.
1. First (see �gure 9.) select a trapezoidal fuzzy number and set to 5 the

number of subintervals in the ��decomposition (the higher N the higher the
precision in the calculations); the maximal value of N is 100; typical values are
2, 5 or 10.

Example for trapezoidal fuzzy number

If the selection is loaded into the X-area, the corrisponding grid appears as in
�gure 10.

Assigne the trapezoidal fuzzy number to X

2. A second fuzzy number is loaded into Y and the button corresponding to
the operation Z=X/Y is activated. The Z-grid is calculated by the rules of the
LU-fuzzy calculus (see �gure 11.).
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An example of a fuzzy division: Z=X/Y

3. To see the graphical representation of X, Y and/or Z, click the corre-
sponding Plot button and the popup windows appear (�gure 12.).

Plotting the operands and the result of an operation

4. Now, we save the result Z of the previous operation and we call Fuzzy_Z
its name (�gure 13.).
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Saving of an intermediate result for further use

5. Now we load the saved Fuzzy_Z into the X-area, by getting it from the
list of saved elements (�gures 14. and 15.).

Loading of a saved intermediate fuzzy number into X area

Result of loading a saved fuzzy number into the X area
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6. If we try to apply the fuzzy extension of the log function to a fuzzy number
X, we �rst select the assigment K=X and then we click on the Z=log(K) button
and on the Plot buttons of X and Z (�gure 16.).

Calculating and plotting X and Z=log(X)

6 Example of Use: Black-Sholes option pricing

In this �nal section we illustrate the use of the calculator for the fuzzi�cation
of Black-Sholes formula in the valuation of a european put or call option.
Standard Black Scholes (B-S) formula for the European put/call options

(without dividends)
St : (current) stock price at time t 2 [0; T ] FUZZY
T : time to maturity CRISP
K : exercise price (strike price) FUZZY
r : interest rate (continuously compounded), FUZZY
� : (standard deviation) volatility, FUZZY
then
FUZZY price Ct of (European) call option at time t is given by:

Ct = St� (D1 (St;K; r; �; T � t))�Ke�r(T�t)� (D2 (St;K; r; �; T � t))

FUZZY price Pt of put option at time t (with the same expiry date T and
strike price K) is given by:

Pt = St[� (D1 (St;K; r; �; T � t))�1]�Ke�r(T�t)[� (D2 (St;K; r; �; T � t))�1]:
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where

� (x) : cumulative (increasing) standard normal function and

D1 =
ln
�
S
K

�
+ rt

�
p
t

+
�

2

p
t;

D2 =
ln
�
S
K

�
+ rt

�
p
t

� �
2

p
t:

Here, we apply exact extension principle for the calculation of D1 and D2 by
extending the two dimensional functions (x; y)! x

y �
y
2 where x = ln

�
S
K

�
+ rt

and y = �
p
t:

The probability density function for the option value Ct is given by (log-
normal type):

D (Ct) =
a

2�
e�

1
2 b

2

where

a =
er(T�t)

� (T � t)
�
Cter(T�t) + St

� and
b =

ln
�
Cte

r(T�t)+k
S

�
�
�
r � �2

2

�
(T � t)p

� (T � t)
:

Also the fuzzy versions of the GREEKS can be easily calculated.
The results obtained by the LU-fuzzy decomposition with N = 10 are exact

up to 8 decimal places.
The data are from H.-C. WU, Computers and Operations Research, 2004.
K = 30, T = 0:25, t = 0 and the fuzzy numbers are all triangular and

symmetric:
S0 = h32; 33; 34i,
r = h0:048; 0:05; 0:052i and

modi�ed to rLU = (0:048; 0:1; 0:12;�0:002; 0:05; 0:005; 0:05;�0:01)
� = h0:08; 0:1; 0:12i and

modi�ed to �LU = (0:08; 0:1; 0:12;�0:005; 0:1; 0:01; 0:1;�0; 1)
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Example Plot X = D1 , Plot Y = �(D1)

Modi�ed r and � to LU: Plot X = rLU , Plot Y = �LU

29



Plot X = C0 , Plot Y =ModifiedC0
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