26 research outputs found

    Effective Hamiltonian for non-minimally coupled scalar fields

    Get PDF
    Performing a relativistic approximation as the generalization to a curved spacetime of the flat space Klein-Gordon equation, an effective Hamiltonian which includes non-minimial coupling between gravity and scalar field and also quartic self-interaction of scalar field term is obtained.Comment: 4 page

    Some Variations on Maxwell's Equations

    Get PDF
    In the first sections of this article, we discuss two variations on Maxwell's equations that have been introduced in earlier work--a class of nonlinear Maxwell theories with well-defined Galilean limits (and correspondingly generalized Yang-Mills equations), and a linear modification motivated by the coupling of the electromagnetic potential with a certain nonlinear Schroedinger equation. In the final section, revisiting an old idea of Lorentz, we write Maxwell's equations for a theory in which the electrostatic force of repulsion between like charges differs fundamentally in magnitude from the electrostatic force of attraction between unlike charges. We elaborate on Lorentz' description by means of electric and magnetic field strengths, whose governing equations separate into two fully relativistic Maxwell systems--one describing ordinary electromagnetism, and the other describing a universally attractive or repulsive long-range force. If such a force cannot be ruled out {\it a priori} by known physical principles, its magnitude should be determined or bounded experimentally. Were it to exist, interesting possibilities go beyond Lorentz' early conjecture of a relation to (Newtonian) gravity.Comment: 26 pages, submitted to a volume in preparation to honor Gerard Emch v. 2: discussion revised, factors of 4\pi corrected in some equation

    Fundamental Physics with the Laser Astrometric Test Of Relativity

    Full text link
    The Laser Astrometric Test Of Relativity (LATOR) is a joint European-U.S. Michelson-Morley-type experiment designed to test the pure tensor metric nature of gravitation - a fundamental postulate of Einstein's theory of general relativity. By using a combination of independent time-series of highly accurate gravitational deflection of light in the immediate proximity to the Sun, along with measurements of the Shapiro time delay on interplanetary scales (to a precision respectively better than 0.1 picoradians and 1 cm), LATOR will significantly improve our knowledge of relativistic gravity. The primary mission objective is to i) measure the key post-Newtonian Eddington parameter \gamma with accuracy of a part in 10^9. (1-\gamma) is a direct measure for presence of a new interaction in gravitational theory, and, in its search, LATOR goes a factor 30,000 beyond the present best result, Cassini's 2003 test. The mission will also provide: ii) first measurement of gravity's non-linear effects on light to ~0.01% accuracy; including both the Eddington \beta parameter and also the spatial metric's 2nd order potential contribution (never measured before); iii) direct measurement of the solar quadrupole moment J2 (currently unavailable) to accuracy of a part in 200 of its expected size; iv) direct measurement of the "frame-dragging" effect on light by the Sun's gravitomagnetic field, to 1% accuracy. LATOR's primary measurement pushes to unprecedented accuracy the search for cosmologically relevant scalar-tensor theories of gravity by looking for a remnant scalar field in today's solar system. We discuss the mission design of this proposed experiment.Comment: 8 pages, 9 figures; invited talk given at the 2005 ESLAB Symposium "Trends in Space Science and Cosmic Vision 2020," 19-21 April 2005, ESTEC, Noodrwijk, The Netherland

    Testing Gravity with Pulsars in the SKA Era

    Get PDF
    The Square Kilometre Array (SKA) will use pulsars to enable precise measurements of strong gravity effects in pulsar systems, which yield tests of gravitational theories that cannot be carried out anywhere else. The Galactic census of pulsars will discover dozens of relativistic pulsar systems, possibly including pulsar -- black hole binaries which can be used to test the "cosmic censorship conjecture" and the "no-hair theorem". Also, the SKA's remarkable sensitivity will vastly improve the timing precision of millisecond pulsars, allowing probes of potential deviations from general relativity (GR). Aspects of gravitation to be explored include tests of strong equivalence principles, gravitational dipole radiation, extra field components of gravitation, gravitomagnetism, and spacetime symmetries

    On the definition and examples of cones and finsler spacetimes

    Get PDF
    The authors warmly acknowledge Professor Daniel Azagra (Universidad Complutense, Madrid) his advise on approximation of convex functions as well as Profs. Kostelecky (Indiana University), Fuster (University of Technology, Eindhoven), Stavrinos (University of Athens), Pfeifer (University of Tartu), Perlick (University of Bremen) and Makhmali (Institute of Mathematics, Warsaw) their comments on a preliminary version of the article. The careful revision by the referee is also acknowledged. This work is a result of the activity developed within the framework of the Programme in Support of Excellence Groups of the Region de Murcia, Spain, by Fundacion Seneca, Science and Technology Agency of the Region de Murcia. MAJ was partially supported by MINECO/FEDER project reference MTM2015-65430-P and Fundacion Seneca project reference 19901/GERM/15, Spain and MS by Spanish MINECO/ERDF project reference MTM2016-78807-C2-1-P.A systematic study of (smooth, strong) cone structures C and Lorentz–Finsler metrics L is carried out. As a link between both notions, cone triples (Ω,T,F), where Ω (resp. T) is a 1-form (resp. vector field) with Ω(T)≡1 and F, a Finsler metric on ker(Ω), are introduced. Explicit descriptions of all the Finsler spacetimes are given, paying special attention to stationary and static ones, as well as to issues related to differentiability. In particular, cone structures C are bijectively associated with classes of anisotropically conformal metrics L, and the notion of cone geodesic is introduced consistently with both structures. As a non-relativistic application, the time-dependent Zermelo navigation problem is posed rigorously, and its general solution is provided.MINECO/FEDER project, Spain MTM2015-65430-PFundacion Seneca 19901/GERM/15Spanish MINECO/ERDF project MTM2016-78807-C2-1-
    corecore