15 research outputs found

    MicroRNA profiling in K-562 cells under imatinib treatment: influence of miR-212 and miR-328 on ABCG2 expression.

    No full text
    BACKGROUND: Despite the enormous success of imatinib in chronic myeloid leukemia (CML), therapy resistance has emerged in a significant proportion of patients, partly because of the overexpression of ABC efflux transporters. METHODS: Using an array comprising 667 miRNAs, we investigated whether the expression of microRNAs (miRNAs) is altered in CML K-562 cells becoming resistant to increasing concentrations of imatinib. ABCB1 and ABCG2 mRNA (quantitative real-time PCR) and protein expression (western blot) were quantified under short-term and 4 months' imatinib treatment. Interaction of miR-212 and miR-328 with ABCG2 was investigated by transfection experiments and reporter gene assays using respective miRNA precursors or miRNA inhibitors. RESULTS: Although ABCB1 protein was not expressed, ABCG2 protein was 7.2-fold elevated after long-term treatment with 0.3 µmol/l imatinib and decreased gradually at higher concentrations. miRNAs miR-212 and miR-328 were identified to correlate inversely with ABCG2 expression under these conditions. Short-term treatment also induced ABCG2 protein concentration dependently and caused a downregulation of miR-212, but not of miR-328 at all tested concentrations (P=0.050). Reporter gene assays confirmed miR-212 to target the 3'-UTR region of ABCG2. In contrast, transfection of anti-miR-212 revealed an upregulation of ABCG2 protein expression, whereas the effect of anti-miR-328 was weak. CONCLUSION: Our study suggests an association of imatinib treatment, miRNA downregulation and ABCG2 overexpression, possibly contributing to the mechanisms involved in imatinib distribution and response in CML therapy

    Impact of ABCC2 haplotypes on transcriptional and posttranscriptional gene regulation and function.

    No full text
    ABCC2 (MRP2) is an important export pump, expressed at tissue barriers. The genetic variants -24C>T, 1249G>A and 3972C>T are leading to inter-individual differences of bioavailability of various endogenous and exogenous compounds. Considering ABCC2 haplotypes, we investigated DNA-protein binding properties, mRNA secondary structure, mRNA stability, protein expression and transport activity in various cell lines and analyzed the bioavailability of talinolol in 24 healthy Caucasian volunteers; -24C>T had no clear influence on DNA-protein binding and the mRNA stability did not differ significantly. In transfected HEK293T/17 cells, haplotypes H9 (CGT), H10 (TGC) and H12 (TGT) had significantly lower protein expression, whereas H2 (CAC) exhibited significantly increased protein expression compared to the wild type (H1, CGC): 32.7 ± 8.8, 73.1 ± 6.3; 44.0 ± 15.5 and 115.2 ± 8.2%, respectively. This corresponded with efflux rates of the fluorescent dye glutathione-methylfluorescein in vitro and by trend with talinolol bioavailability in vivo. In conclusion our results show a haplotype-dependent influence on transport capacity of ABCC2, which seems to be mainly based on posttranscriptional modification of protein expression rather than transport rates

    Multidrug Resistance-Associated Protein 2 (MRP2/ABCC2) Haplotypes Significantly Affect the Pharmacokinetics of Tacrolimus in Kidney Transplant Recipients

    No full text
    BACKGROUND AND OBJECTIVE: Tacrolimus is an immunosuppressive drug used for the prevention of the allograft rejection in the kidney allograft recipients. It exhibits a narrow therapeutic index and a large pharmacokinetic variability. Tacrolimus is mainly metabolized by cytochrome P450 (CYP) 3A4 and 3A5, and effluxed via ATP-binding cassette (ABC) transporters such as P-glycoprotein (P-gp), encoded by ABCB1 gene. The influence of CYP3A5*3 on the pharmacokinetics of tacrolimus has been well characterized. On the other hand, the contribution of polymorphisms in other genes is controversial. In addition, the involvement of other efflux transporter than P-gp in tacrolimus disposition is uncertain. The present study was designed to investigate the effects of genetic polymorphisms of CYP3As and efflux transporters on the pharmacokinetics of tacrolimus. SUBJECTS AND METHODS: A total of 500 blood concentrations of tacrolimus from 102 adult stable kidney transplant recipients were included in the analyses. Genetic polymorphisms in CYP3A4 and CYP3A5 genes as well as the genes of efflux transporters including P-gp (ABCB1), multidrug resistance-associated protein (MRP2/ABCC2) and breast cancer resistance protein (BCRP/ABCG2) were genotyped. For ABCC2 gene, haplotypes were determined as follows: H1 (wild type), H2 (1249G>A), H9 (3972C>T) and H12 (−24C>T and 3972C>T). Population pharmacokinetic analysis was performed using nonlinear mixed effects modeling. RESULTS: Analyses revealed that CYP3A5 expressers (CYP3A5*1 carriers) and MRP2 high activity group (ABCC2 H2/H2 and H1/H2) decreased the dose-normalized trough concentration of tacrolimus by 2.3-fold (p<0.001) and 1.5-fold (p=0.007), respectively. The pharmacokinetics of tacrolimus was best described using a two-compartment model with first order absorption and an absorption lag time. In the population pharmacokinetic analysis, CYP3A5 expressers and MRP2 high activity groups were identified as the significant covariates for tacrolimus apparent clearance expressed as 20.7 × (Age/50)(−0.78) × 2.03 (CYP3A5 expressers) × 1.40 (MRP2 high activity group). No other CYP3A4, ABCB1 and ABCG2 polymorphisms were associated with the apparent clearance of tacrolimus. CONCLUSIONS: This is the first report that MRP2/ABCC2 has crucial impacts on the pharmacokinetics of tacrolimus in a haplotype specific manner. Determination of ABCC2 as well as CYP3A5 genotype may be useful for more accurate tacrolimus dosage adjustment
    corecore