11 research outputs found

    CAwa-NeRF: Instant Learning of Compression-Aware NeRF Features

    Full text link
    Modeling 3D scenes by volumetric feature grids is one of the promising directions of neural approximations to improve Neural Radiance Fields (NeRF). Instant-NGP (INGP) introduced multi-resolution hash encoding from a lookup table of trainable feature grids which enabled learning high-quality neural graphics primitives in a matter of seconds. However, this improvement came at the cost of higher storage size. In this paper, we address this challenge by introducing instant learning of compression-aware NeRF features (CAwa-NeRF), that allows exporting the zip compressed feature grids at the end of the model training with a negligible extra time overhead without changing neither the storage architecture nor the parameters used in the original INGP paper. Nonetheless, the proposed method is not limited to INGP but could also be adapted to any model. By means of extensive simulations, our proposed instant learning pipeline can achieve impressive results on different kinds of static scenes such as single object masked background scenes and real-life scenes captured in our studio. In particular, for single object masked background scenes CAwa-NeRF compresses the feature grids down to 6% (1.2 MB) of the original size without any loss in the PSNR (33 dB) or down to 2.4% (0.53 MB) with a slight virtual loss (32.31 dB).Comment: 10 pages, 9 figure

    COOL-CHIC: Coordinate-based Low Complexity Hierarchical Image Codec

    Full text link
    We introduce COOL-CHIC, a Coordinate-based Low Complexity Hierarchical Image Codec. It is a learned alternative to autoencoders with approximately 2000 parameters and 2500 multiplications per decoded pixel. Despite its low complexity, COOL-CHIC offers compression performance close to modern conventional MPEG codecs such as HEVC and VVC. This method is inspired by the Coordinate-based Neural Representation, where an image is represented as a learned function which maps pixel coordinates to RGB values. The parameters of the mapping function are then sent using entropy coding. At the receiver side, the compressed image is obtained by evaluating the mapping function for all pixel coordinates. COOL-CHIC implementation is made available upon request

    Low-complexity Overfitted Neural Image Codec

    Full text link
    We propose a neural image codec at reduced complexity which overfits the decoder parameters to each input image. While autoencoders perform up to a million multiplications per decoded pixel, the proposed approach only requires 2300 multiplications per pixel. Albeit low-complexity, the method rivals autoencoder performance and surpasses HEVC performance under various coding conditions. Additional lightweight modules and an improved training process provide a 14% rate reduction with respect to previous overfitted codecs, while offering a similar complexity. This work is made open-source at https://orange-opensource.github.io/Cool-Chic/Comment: Accepted at IEEE MMSP 202

    Coding standards as anchors for the CVPR CLIC video track

    No full text
    International audienceIn 2021, a new track has been initiated in the Challenge for Learned Image Compression : the video track. This category proposes to explore technologies for the compression of short video clips at 1 Mbit/s. This paper proposes to generate coded videos using the latest standardized video coders, especially Versatile Video Coding (VVC). The objective is not only to measure the progress made by learning techniques compared to the state of the art video coders, but also to quantify their progress from years to years. With this in mind, this paper documents how to generate the video sequences fulfilling the requirements of this challenge, in a reproducible way, targeting the maximum performance for VVC

    Binary Probability Model for Learning Based Image Compression

    No full text
    International audienceIn this paper, we propose to enhance learned image compression systems with a richer probability model for the latent variables. Previous works model the latents with a Gaussian or a Laplace distribution. Inspired by binary arithmetic coding , we propose to signal the latents with three binary values and one integer, with different probability models. A relaxation method is designed to perform gradient-based training. The richer probability model results in a better entropy coding leading to lower rate. Experiments under the Challenge on Learned Image Compression (CLIC) test conditions demonstrate that this method achieves 18 % rate saving compared to Gaussian or Laplace models

    Conditional Coding for Flexible Learned Video Compression

    No full text
    International audienceThis paper introduces a novel framework for end-to-end learned video coding. Image compression is generalized through conditional coding to exploit information from reference frames, allowing to process intra and inter frames with the same coder. The system is trained through the minimization of a rate-distortion cost, with no pre-training or proxy loss. Its flexibility is assessed under three coding configurations (All Intra, Low-delay P and Random Access), where it is shown to achieve performance competitive with the state-of-the-art video codec HEVC

    Optical Flow and Mode Selection for Learning-based Video Coding

    No full text
    International audienceThis paper introduces a new method for inter-frame coding based on two complementary autoencoders: MOFNet and CodecNet. MOFNet aims at computing and conveying the Optical Flow and a pixel-wise coding Mode selection. The optical flow is used to perform a prediction of the frame to code. The coding mode selection enables competition between direct copy of the prediction or transmission through CodecNet. The proposed coding scheme is assessed under the Challenge on Learned Image Compression 2020 (CLIC20) P-frame coding conditions, where it is shown to perform on par with the state-of-the-art video codec ITU/MPEG HEVC. Moreover, the possibility of copying the prediction enables to learn the optical flow in an end-to-end fashion i.e. without relying on pre-training and/or a dedicated loss term

    Conditional Coding and Variable Bitrate for Practical Learned Video Coding

    No full text
    International audienceThis paper introduces a practical learned video codec. Conditional coding and quantization gain vectors are used to provide flexibility to a single encoder/decoder pair, which is able to compress video sequences at a variable bitrate. The flexibility is leveraged at test time by choosing the rate and GOP structure to optimize a rate-distortion cost. Using the CLIC21 video test conditions, the proposed approach shows performance on par with HEVC

    ModeNet: Mode Selection Network For Learned Video Coding

    No full text
    International audienceIn this paper, a mode selection network (ModeNet) is proposed to enhance deep learning-based video compression. Inspired by traditional video coding, ModeNet purpose is to enable competition among several coding modes. The proposed ModeNet learns and conveys a pixel-wise partitioning of the frame, used to assign each pixel to the most suited coding mode. ModeNet is trained alongside the different coding modes to minimize a rate-distortion cost. It is a flexible component which can be generalized to other systems to allow competition between different coding tools. Mod-eNet interest is studied on a P-frame coding task, where it is used to design a method for coding a frame given its prediction. ModeNet-based systems achieve compelling performance when evaluated under the Challenge on Learned Image Compression 2020 (CLIC20) P-frame coding track conditions
    corecore