14 research outputs found

    Recent Progress in the Use of Glucagon and Glucagon Receptor Antagonists in the Treatment of Diabetes Mellitus

    Get PDF
    Glucagon is an important pancreatic hormone, released into blood circulation by alpha cells of the islet of Langerhans. Glucagon induces gluconeogenesis and glycogenolysis in hepatocytes, leading to an increase in hepatic glucose production and subsequently hyperglycemia in susceptible individuals. Hyperglucagonemia is a constant feature in patients with T2DM. A number of bioactive agents that can block glucagon receptor have been identified. These glucagon receptor antagonists can reduce the hyperglycemia associated with exogenous glucagon administration in normal as well as diabetic subjects. Glucagon receptor antagonists include isoserine and beta-alanine derivatives, bicyclic 19-residue peptide BI-32169, Des-His1-[Glu9] glucagon amide and related compounds, 5-hydroxyalkyl-4-phenylpyridines, N-[3-cano-6- (1,1 dimethylpropyl)-4,5,6,7-tetrahydro-1-benzothien-2-yl]-2-ethylbutamide, Skyrin and NNC 250926. The absorption, dosage, catabolism, excretion and medicinal chemistry of these agents are the subject of this review. It emphasizes the role of glucagon in glucose homeostasis and how it could be applied as a novel tool for the management of diabetes mellitus by blocking its receptors with either monoclonal antibodies, peptide and non-peptide antagonists or gene knockout techniques

    Performance on emotional tasks engaging cognitive control depends on emotional intelligence abilities: an ERP study

    Get PDF
    Abstract Cognitive control is a key process in decision making and adequately adapting our behavior to the environment. Previous studies have provided evidence of a lower capacity for cognitive control in emotion-laden contexts in comparison with neutral contexts. The aim of the present research was to study changes in cognitive control performance as a function of emotional intelligence (EI) level in contexts involving emotional information. The study sample was composed of 2 groups of 22 participants each: the high and low EI group. Participants carried out an emotional go/no-go task while brain activity was recorded by EEG. N2 and P3 ERPs were used as indices of cognitive control processing. Participants with higher EI showed a larger N2, reflecting a greater capacity for cognitive control related to changes in conflict monitoring, and to a better detection and evaluation of the emotional stimuli. Moreover, in general, response inhibition accuracy was reduced when emotional information was involved in this process. Our findings reveal that neural mechanisms underlying tasks that engage cognitive control depend on emotional content and EI level. This study indicates the important role played by EI in the relationship between emotion and cognition. EI training may be a very useful tool for improving performance in emotion-laden contexts
    corecore