11 research outputs found

    Efecto de tratamientos selvícolas de diferente intensidad sobre el microclima del suelo y los ciclos de nutrientes de un bosque de pino carrasco

    Full text link
    Tesis por compendio[EN] Aleppo pine covers a large area in the Mediterranean region, but the effects of silvicultural practices that modify the canopy on the ecology of these forests have been relatively understudied. In this Ph D thesis we assess the effect of silvicultural treatments of different intensities on some key aspects that regulate the soil microclimate and the nutrient dynamics of a P. halepensis forest. The treatments are: shelterwoods of two intensities (60 and 75% of basal area removed, referred to as T60 and T75, respectively) and clearfelling (100% of basal area removed, T100) which were compared with untreated controls (T0). The study was conducted ten years following the implementation of the treatments.. Therefore, we provide useful information to determine its mid-term effects on the ecology of this Mediterranean forest ecosystem. The T100 treatment has caused an increase in soil temperature, and the time series analysis indicates that this treatment has affected both the annual sinusoidal component of variation and the daily fluctuations in the short term. Soil moisture in the summer has been significantly reduced in the T100 treatments. This reduction is due to reduced water infiltration into the soil, which is attributed to an increase in the hydrophobicity or to the creation of surface crusts in the bare soil. The T60 and T75 treatments have not caused significant changes in the soil temperature and moisture dynamics, probably due to the closure of the canopy and to the understory development. The production of litterfall and the associated return of nutrients to the soil (C, N, P, K, Ca and Mg) were linearly reduced with the treatment intensity, with the basal area removed explaining 45-60% of their variation. The exception was K return, which had a lower sensitivity to treatment intensity due to the compensation of the understory litterfall. There has been a slight decrease in the decomposition rate of the P. halepensis needles associated to T100 treatment, as well as alterations in the Ca and K release from the needles. These changes are due to the contamination with soil particles caused by the limited presence of the forest floor in the plots subjected to this treatment. The T60 and T75 treatments have neither significantly affected the litter decomposition nor the associated nutrient release. The soil N mineralization rate in the three silvicultural treatments doubled that of the untreated forest, and this fact seems to be related to the higher proportion of understory litterfall in the treated plots. Overall, soil type has not significantly affected the impact of silvicultural treatments on the ecological processes studied in this work. The results suggest that the mid-term influence of the treatments on microclimate is limited to T100 treatment, and these differences in microclimate do not seem to affect nutrient dynamics. We suggest that studying the dynamics of the understory is necessary to assess the impact of silvicultural treatments on the biogeochemical cycles in these forests.[ES] El pino carrasco ocupa una extensa superficie en la región Mediterránea, pero los efectos de las prácticas selvícolas que modifican el dosel arbóreo sobre la ecología de estos bosques han sido relativamente poco estudiados. En la presente tesis doctoral se evalúa el efecto de tratamientos selvícolas de diferentes intensidades sobre algunos aspectos clave que regulan el microclima del suelo y la dinámica de nutrientes de un bosque de P. halepensis. Los tratamientos estudiados son aclareos sucesivos uniformes de dos intensidades (60 y 75% de área basimétrica sustraída, denominados T60 y T75 respectivamente) y corta a hecho (100% de área basimétrica sustraída, T100), que se comparan con controles no tratados (T0). El estudio se ha realizado más de diez años después de la ejecución de los tratamientos, por lo que se proporciona información útil para determinar sus efectos a medio plazo sobre la ecología de este ecosistema forestal mediterráneo. El tratamiento T100 ha provocado un aumento en la temperatura del suelo, y el análisis de series temporales indica que este tratamiento ha afectado tanto al componente senoidal anual de la variación como a las variaciones diarias en el corto plazo. La humedad del suelo en el periodo estival se ha visto reducida significativamente en los tratamientos T100. Esta reducción se debe a la menor infiltración de agua en el suelo, que se atribuye al incremento en la hidrofobicidad o a la creación de costras superficiales por dejar el suelo descubierto. Los tratamientos T60 y T75 no han provocado cambios importantes en la dinámica de la temperatura y la humedad del suelo, probablemente por el cierre del dosel arbóreo y el desarrollo del sotobosque. La producción de desfronde y el retorno asociado de nutrientes al suelo (C, N, P, K, Ca y Mg) se ha reducido de forma lineal con la intensidad del tratamiento, de forma que el área basal sustraída explica el 45-60% de su variación, con la excepción del retorno de K que presenta una menor sensibilidad a la intensidad del tratamiento debido al papel de compensación del desfronde del sotobosque. Se ha observado un ligero descenso en la tasa de descomposición de las acículas de P halepensis relacionado con el tratamiento T100, así como alteraciones en la liberación asociada de Ca y K de las acículas. Estos cambios se deben al efecto de la contaminación con partículas de suelo provocada por la limitada presencia del horizonte orgánico en las parcelas sometidas a este tratamiento. Los tratamientos T60 y T75 no han afectado de forma significativa a la descomposición de la hojarasca ni a la liberación de nutrientes asociada. La tasa de mineralización de N en el suelo mineral se ha duplicado en los tres tratamientos selvícolas en comparación con el bosque no tratado, lo que parece estar relacionado con que en las parcelas tratadas haya una mayor proporción de desfronde de matorral. En general, el tipo de suelo no parece haber afectado de forma importante al impacto de los tratamientos selvícolas sobre los procesos ecológicos estudiados en este trabajo. Los resultados en su conjunto sugieren que la influencia a medio plazo de los tratamientos sobre el microclima se limita a los tratamientos T100, y además, que estas diferencias en el microclima no parecen afectar a la dinámica de nutrientes. Se sugiere para próximos trabajos el estudio de la dinámica del matorral, que parece ser un factor determinante a la hora de evaluar el impacto de los tratamientos selvícolas sobre los ciclos biogeoquímicos de este tipo de bosque.[CA] El pi blanc ocupa una extensa superfície a la regió Mediterrània, però els efectes de les pràctiques silvícoles que modifiquen el dosser arbori sobre l'ecologia d'aquests boscos han estat relativament poc estudiats. En la present tesi doctoral s'avalua l'efecte de tractaments silvícoles de diferents intensitats sobre alguns aspectes clau que regulen el microclima del sòl i la dinàmica de nutrients d'un bosc de P. halepensis. Els tractaments estudiats són aclarida successiva uniforme de dues intensitats (60 i 75% d'àrea basimètrica sostreta, denominats T60 i T75 respectivament) i tallada arreu (100% d'àrea basimètrica sostreta, T100), que es comparen amb controls no tractats (T0). L'estudi s'ha realitzat més de deu anys després de l'execució dels tractaments, de manera que es proporciona informació útil per determinar els seus efectes a mitjà termini sobre l'ecologia d'aquest ecosistema forestal mediterrani. El tractament T100 ha provocat un augment en la temperatura del sòl, i l'anàlisi de sèries temporals indica que aquest tractament ha afectat tant al component sinusoïdal anual de la variació com a les variacions diàries en el curt termini. La humitat del sòl en el període estival s'ha vist reduïda significativament en els tractaments T100. Aquesta reducció es deu a la menor infiltració d'aigua en el sòl, que s'atribueix a l'increment en la hidrofobicitat o a la creació de crostes superficials per deixar el sòl descobert. Els tractaments T60 i T75 no han provocat canvis importants en la dinàmica de la temperatura i la humitat del sòl, probablement pel tancament del dosser arbori i el desenvolupament del sotabosc. La producció de fullaraca i el retorn associat de nutrients al sòl (C, N, P, K, Ca i Mg) s'ha reduït de forma lineal amb la intensitat del tractament, de manera que l'àrea basimètrica sostreta explica el 45-60% de la seva variació, amb l'excepció del retorn de K que presenta una menor sensibilitat a la intensitat del tractament a causa del paper de compensació de la producció de fullaraca del sotabosc. S'ha observat un lleuger descens en la taxa de descomposició de les acícules de P. halepensis relacionat amb el tractament T100, així com alteracions en l'alliberament de Ca i K de les acícules en descomposició. Aquests canvis es deuen a l'efecte de la contaminació amb partícules de sòl provocada per la limitada presència de l'horitzó orgànic en les parcel¿les sotmeses a aquest tractament. Els tractaments T60 i T75 no han afectat de manera significativa a la descomposició de la fullaraca ni a l'alliberament de nutrients associat. La taxa de mineralització de N al sòl mineral s'ha duplicat en els tres tractaments silvícoles en comparació amb el bosc no tractat, el que sembla estar relacionat amb que a les parcel¿les tractades hagi una major proporció de producció de fullaraca del sotabosc. En general, el tipus de sòl no sembla haver afectat de forma important a l'impacte dels tractaments silvícoles sobre els processos ecològics estudiats en aquest treball. Els resultats en el seu conjunt suggereixen que la influència a mig termini dels tractaments sobre el microclima es limita al tractament T100, i a més, que aquestes diferències en el microclima no semblen afectar la dinàmica de nutrients. Per a propers treballs, es suggereix l'estudi de la dinàmica del matoll, que sembla ser un factor determinant a l'hora d'avaluar l'impacte dels tractaments silvícoles sobre els cicles biogeoquímics d'aquest tipus de bosc.Lado Monserrat, L. (2015). Efecto de tratamientos selvícolas de diferente intensidad sobre el microclima del suelo y los ciclos de nutrientes de un bosque de pino carrasco [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/59417TESISCompendi

    EFECTO DE TRATAMIENTOS SELVÍCOLAS SOBRE LA TEMPERATURA Y LA HUMEDAD DE SUELO EN PARCELAS DE PINO CARRASCO

    Full text link
    Los tratamientos selvícolas de regeneración son técnicas que permiten incrementar la resiliencia y biodiversidad de las masas reforestadas, y el estudio de sus efectos en diversos aspectos de la ecología del bosque mediterráneo es un área emergente de investigación.Lado Monserrat, L. (2010). EFECTO DE TRATAMIENTOS SELVÍCOLAS SOBRE LA TEMPERATURA Y LA HUMEDAD DE SUELO EN PARCELAS DE PINO CARRASCO. http://hdl.handle.net/10251/13688Archivo delegad

    Mid-Term Effects of Forest Thinning on N Mineralization in a Semi-Arid Aleppo Pine Forest

    Full text link
    [EN] In order to assess the sustainability of silvicultural treatments in semiarid forests, it is necessary to know how they affect the nutrient dynamics in the forest. The objective of this paper is to study the effects of silvicultural treatments on the net N mineralization and the available mineral N content in the soil after 13 years following forest clearings. The treatments were carried out following a randomized block design, with four treatments and two blocks. The distance between the two blocks was less than 3 km; they were located in Chelva (CH) and Tuéjar (TU) in Valencia, Spain. Within each block, four experimental clearing treatments were carried out in 1998: T0 control; and T60, T75 and T100 where 60%, 75% and 100 of basal area was eliminated, respectively. Nitrogen dynamics were measured using the resin tube technique, with disturbed samples due to the high stoniness of the plots. Thirteen years after the experimental clearings, T100, T75 and T60 treatments showed a twofold increase in the net mineralization and nitrification rates with respect to T0 in both blocks (TU and CH). Within the plots, the highest mineralization was found in sites with no plant cover followed by those covered by undergrowth. These results can be explained in terms of the different litterfall qualities, which in turn are the result of the proportion of material originating from Pinus halepensis Mill. vs. more decomposable undergrowth residuesThis work has been supported by a fellowship from the Generalitat Valenciana, Consellería de Educación, Formación y Empleo awarded to L. Lado-Monserrat (BFPI/2008/041). Silvicultural treatments were carried out by the Mediterranean Centre for Environmental Studies (CEAM) through programme ¿I+D en relación con la restauración de la cubierta vegetal y otros aspectos de investi-gación forestal¿ (R&D in relation to the restoration of vegetation cover and other aspects of forestry research). Dataloggers and probes were provided by the Generalitat Valenciana through Project ¿Efecto de diferentes sistemas de aclareo de masa forestal sobre la disponibilidad de agua, nutrientes y la regeneración de la masa arbórea y arbustiva en parcelas de pinar¿ (Effect of different forest thinning systems on the availability of water, nutrients and trees and understory regeneration in pine forest plots) (GV06/126)Bautista, I.; Lado-Monserrat, L.; Lull, C.; Lidón, A. (2021). Mid-Term Effects of Forest Thinning on N Mineralization in a Semi-Arid Aleppo Pine Forest. Forests. 12(11):1-16. https://doi.org/10.3390/f12111470S116121

    Soil moisture increment as a controlling variable of the Birch effect . Interactions with the pre-wetting soil moisture and litter addition

    Full text link
    The Birch effect is a pulse in soil C and N mineralization caused by the wetting of dry soils, but the role of the soil moisture increment (Delta SWC) is still poorly understood. We quantified the relationship between Delta SWC and the Birch effect, and its interactions with pre-wetting soil moisture (preSWC) and substrate supply. Two soils (clay loam and sandy loam) under a Pinus halepensis forest were subjected to rewetting in laboratory treatments combining different Delta SWC and preSWC values, with or without additional substrate (5 mg g(-1) P. halepensis needles). Respiration flush (Delta R), changes in microbial biomass C (MBC) and net N mineralization (NMIN) were measured. Overall, we found a relationship with the form: Delta R = a Delta SWC + b, where the slope (a) was significant only when pre-wetting water potential was below a threshold value in the range of -100 to -1,200 kPa. However, the threshold alone does not fully describe the role of preSWC in slope variability. Substrate addition modified the Delta SWC sensitivity of Birch effect, enhancing it in the clay loam and suppressing it in the sandy loam. The intensity of the wetting is a dominant factor regulating Birch effect, and Delta SWC is useful for its quantification.This work was supported by a fellowship from Generalitat Valenciana, Conselleria de Educacion, Formacion y Empleo awarded to L. Lado-Monserrat (BFPI/2008/041). Thanks are due to Antonio del Campo for help in data analyses and to Antonio Lloret for laboratory work. The authors wish to thank Joana Oliver for invaluable laboratory support. The authors also thank two anonymous reviewers and Professor Stephan Glatzel from the University of Rostock, Germany, for the critical review of the manuscript.Lado Monserrat, L.; Lull Noguera, C.; Bautista Carrascosa, MI.; Lidón Cerezuela, AL.; Herrera Fernandez, R. (2014). Soil moisture increment as a controlling variable of the Birch effect . Interactions with the pre-wetting soil moisture and litter addition. Plant and Soil. 379(1-2):21-34. https://doi.org/10.1007/s11104-014-2037-5S21343791-2Austin AT, Yahdjian L, Stark JM, Belnap J, Porporato A, Norton U, Ravetta DA, Schaeffer SM (2004) Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141:221–235Berryman E, Marshall JD, Rahn T, Litvak M, Butnor J (2013) Decreased carbon limitation of litter respiration in a mortality-affected piñon-juniper woodland. Biogeosciences 10:1625–1634Birch HF (1958) The effect of soil drying on humus decomposition and nitrogen. Plant soil 10:9–31Borken W, Matzner E (2009) Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils. Global Change Biol 15:808–824Bottner P (1985) Response of microbial biomass to alternate moist and dry conditions in a soil incubated with C-14-labeled and N-15-labeled plant material. Soil Biol Biochem 17:329–337Butterly CR, Bünemann EK, McNeill AM, Baldock JA, Marschner P (2009) Carbon pulses but not phosphorus pulses are related to decreases in microbial biomass during repeated drying and rewetting of soils. Soil Biol Biochem 41:1406–1416Cable JM, Ogle K, Williams DG, Weltzin JF, Huxman TE (2008) Soil texture drives responses of soil respiration to precipitation pulses in the Sonoran Desert: implications for climate change. Ecosystems 11:961–979Campbell GS (1974) A simple method for determining unsaturated conductivity from moisture retention data. Soil Sci 117:311–314Carbone MS, Still CJ, Ambrose AR, Dawson TE, Williams AP, Boot CM, Schaeffer SM, Schimel JP (2011) Seasonal and episodic moisture controls on plant and microbial contributions to soil respiration. Oecologia 167:265–278Chatterjee A, Jenerette GD (2011) Changes in soil respiration Q10 during drying-rewetting along a semi-arid elevation gradient. Geoderma 163:171–177Chowdhury N, Burns RG, Marschner P (2011a) Recovery of soil respiration after drying. Plant Soil 348:269–279Chowdhury N, Nakatani AS, Setia R, Marschner P (2011b) Microbial activity and community composition in saline and non-saline soils exposed to multiple drying and rewetting events. Plant Soil 348:103–113Cobos D, Campbell C (2007) Correcting temperature sensitivity of ECH2O soil moisture sensors. Application note. Decagon Devices Inc., PullmanDaly E, Palmroth S, Stoy P, Siqueira M, Oishi AC, Juang JY, Oren R, Porporato A, Katul GG (2009) The effects of elevated atmospheric CO2 and nitrogen amendments on subsurface CO2 production and concentration dynamics in a maturing pine forest. Biogeochemistry 94:271–287Denef K, Six J, Bossuyt H, Frey SD, Elliott ET, Merckx R, Paustian K (2001) Influence of dry-wet cycles on the interrelationship between aggregate, particulate organic matter, and microbial community dynamics. Soil Biol Biochem 33:1599–1611Fernandez C, Lelong B, Vila B, Mévy JP, Robles C, Greff S, Dupouyet S, Bousquet-Mélou A (2006) Potential allelopathic effect of Pinus halepensis in the secondary succession: an experimental approach. Chemoecology 16:97–105Fierer N, Schimel JP (2002) Effects of drying-rewetting frequency on soil carbon and nitrogen transformations. Soil Biol Biochem 34:777–787Fischer T (2009) Substantial rewetting phenomena on soil respiration can be observed at low water availability. Soil Biol Biochem 41:1577–1579Franzluebbers AJ, Haney RL, Honeycutt CW, Schomberg HH, Hons FM (2000) Flush of carbon dioxide following rewetting of dried soils relates to active organic pools. Soil Sci Soc Am J 64:613–623García-Plé C, Vanrell P, Morey M (1995) Litter fall and decomposition in a Pinus halepensis forest on Mallorca. J Veg Sci 6:17–22GVA (1995) Mapa de Suelos de la Comunidad Valenciana. Chelva (666). Proyecto LUCDEME (Icona), Centro de Investigaciones sobre Desertificación y Conselleria d’Agricultura i Mig Ambient. Generalitat Valenciana. Valencia, Spain. (Original in Spanish).Halverson LJ, Jones TM, Firestone MK (2000) Release of intracellular solutes by four soil bacteria exposed to dilution stress. Soil Sci Soc Am J 64:1630–1637Harrison-Kirk T, Beare MH, Meenken ED, Condron LM (2013) Soil organic matter and texture affect responses to dry/wet cycles: Effects on carbon dioxide and nitrous oxide emissions. Soil Biol Biochem 57:43–55Harris RF (1981) Effect of water potential on microbial growth and activity. In: Parr JF, Gardner WR, Elliott LF (eds) Water potential relations in soil microbiology. Am Soc Agron, Madison, pp 23–95Haynes RJ, Swift RS (1990) Stability of soil aggregates in relation to organic constituents and soil water content. J Soil Sci 41:73–83Jarvis P, Rey A, Petsikos C, Wingate L, Rayment M, Pereira J, Banza J, David J, Miglietta F, Borghetti M, Manca G, Valentini R (2007) Drying and wetting of Mediterranean soils stimulates decomposition and carbon dioxide emission: the “Birch effect”. Tree Physiol 27:929–940Kieft TL, Soroker E, Firestone MK (1987) Microbial biomass response to a rapid increase in water potential when dry soil is wetted. Soil Biol Biochem 19:119–126Kim D, Mu S, Kang S, Lee D (2010) Factors controlling soil CO2 effluxes and the effects of rewetting on effluxes in adjacent deciduous, coniferous, and mixed forests in Korea. Soil Biol Biochem 42:576–585Manzoni S, Schimel JP, Porporato A (2012) Responses of soil microbial communities to water stress: results from a meta-analysis. Ecology 93:930–938McIntyre RES, Adams MA, Ford DJ, Grierson PF (2009) Rewetting and litter addition influence mineralisation and microbial communities in soils from a semi-arid intermittent stream. Soil Biol Biochem 41:92–101Miller AE, Schimel JP, Meixner T, Sickman JO, Melack JM (2005) Episodic rewetting enhances carbon and nitrogen release from chaparral soils. Soil Biol Biochem 37:2195–2204Muhr J, Franke J, Borken W (2010) Drying-rewetting events reduce C and N losses from a Norway spruce forest floor. Soil Biol Biochem 42:1303–1312Navarro-García F, Casermeiro MA, Schimel JP (2012) When structure means conservation: Effect of aggregate structure in controlling microbial responses to rewetting events. Soil Biol Biochem 44:1–8Rey A, Petsikos C, Jarvis PG, Grace J (2005) Effect of temperature and moisture on rates of carbon mineralization in a Mediterranean oak forest soil under controlled and field conditions. Eur J Soil Sci 56:589–599Richards LA (1965) Physical condition of water in soil. In: Black CA, Evans DD, White JL, Ensminger LE, Clark FE (eds) Methods of soil analysis part 1. Agronomy series n°9. American Society of Agronomy, MadisonScanlon BR, Andraski BJ, Bilskie J (2002) Miscellaneous methods for measuring matric or water potential. In: Dane JH, Topp GC (Eds) Methods of Soil Analysis. Part 4: Physical Methods. Soil Sci Soc Am, Madison. Wisconsin, pp: 643–670.Schmitt A, Glaser B, Borken W, Martzner E (2010) Organic matter quality of a forest soil subjected to repeated drying and different re-wetting intensities. Eur J Soil Sci 61:243–254Sponseller RA (2007) Precipitation pulses and soil CO2 flux in a Sonoran Desert ecosystem. Global Change Biol 13:426–436Unger S, Máguas C, Pereira JS, David TS, Werner C (2010) The influence of precipitation pulses on soil respiration – Assessing the “Birch effect” by stable carbon isotopes. Soil Biol Biochem 42:1800–1810Vance ED, Brookes PC, Jenkinson DS (1987) Microbial biomass measurements in forest soils: The use of the chloroform fumigation-incubation method in strongly acid soils. Soil Biol Biochem 19:697–702Van Gestel M, Merckx R, Vlassak K (1993) Microbial biomass responses to soil drying and rewetting – the fate of fast-growing and slow-growing microorganisms in soils from different climates. Soil Biol Biochem 25:109–123Wu J, Joergensen RG, Pommerening B, Chaussod R, Brookes PC (1990) Measurement of soil microbial biomass C by fumigation-extraction - an automated procedure. Soil Biol Biochem 22:1167–1169Wu H, Lee X (2011) Short-term effects of rain on soil respiration in two New England forests. Plant Soil 338:329–342Xiang SR, Doyle A, Holden PA, Schimel JP (2008) Drying and rewetting effects on C and N mineralization and microbial activity in surface and subsurface California grassland soils. Soil Biol Biochem 40:2281–2289Xu LK, Baldocchi DD, Tang JW (2004) How soil moisture, rain pulses, and growth alter the response of ecosystem respiration to temperature. Global Biogeochem Cyc 18, GB4002. doi: 10.1029/2004GB002281Xu X, Luo X (2012) Effect of wetting intensity on soil GHG fluxes and microbial biomass under a temperate forest floor during dry season. Geoderma 170:118–126Yuste JC, Janssens IA, Ceulemans R (2005) Calibration and validation of an empirical approach to model soil CO2 efflux in a deciduous forest. Biogeochemistry 73:209–23

    Litterfall, litter decomposition and associated nutrient fluxes in Pinus halepensis: influence of tree removal intensity in a Mediterranean forest

    Full text link
    The online version of this article (doi:10.1007/s10342-015-0893-z) contains supplementary material, which is available to authorized users[EN] Our knowledge about the influence of silvicultural treatments on nutrient cycling processes in Mediterranean forests is still limited. Four levels of tree removal were compared in an Aleppo pine forest in eastern Spain to determine the effects on litterfall, litter decomposition and the associated nutrient fluxes after 12 years. Removal treatments included clearfelling, two shelterwood intensities (60 and 75 % of basal area removed) and untreated controls. Twelve years later, the basal area removed still explained 60 % of litterfall mass variance and 60 % of C, 52 % of N, 45 % of P, 17 % of K, 47 % of Ca and 60 % of Mg return variances. Litter decomposed somewhat more slowly in clearfellings compared to controls (p = 0.049), accumulated more Ca and released less K compared to the other three treatments. This was explained by contamination with mineral particles due to the poorly developed O horizon in clearfellings. We conclude that the management practices reduced the nutrient return via litterfall, but the nutrient release through decomposition seems poorly sensitive to canopy disturbance. In order to accurately quantify the harvesting impacts on nutrient cycling in this Mediterranean forest system, it is necessary to measure the litterfall of the understory layer.This work has been supported by a fellowship from the Generalitat Valenciana, Conselleria de Educacion, Formacion y Empleo awarded to L. Lado-Monserrat (BFPI/2008/041). Silvicultural treatments were carried out by the Mediterranean Centre for Environmental Studies (CEAM) through programme "I + D en relacion con la restauracion de la cubierta vegetal y otros aspectos de investigacion forestal". Dataloggers and probes were provided by the Generalitat Valenciana through Project "Efecto de diferentes sistemas de aclareo de masa forestal sobre la disponibilidad de agua, nutrientes y la regeneracion de la masa arborea y arbustiva en parcelas de pinar" (GV06/126). We acknowledge Joana Oliver, Ruth M. Tavera and Daniel Fortanet for their help in the laboratory and in the field. The authors wish to thank Francisco Galiana for his assistance, including help in fieldwork and providing information about the experimental design of the silvicultural treatments. Thanks also go to Rafael Herrera from the Centro de Ecologia, Instituto Venezolano de Investigaciones Cientificas, Caracas, Venezuela and two anonymous reviewers for critically reviewing the manuscript.Lado Monserrat, L.; Lidón, A.; Bautista, I. (2015). Litterfall, litter decomposition and associated nutrient fluxes in Pinus halepensis: influence of tree removal intensity in a Mediterranean forest. European Journal of Forest Research. 134(5):833-844. https://doi.org/10.1007/s10342-015-0893-zS8338441345Almagro M, Martínez-Mena M (2012) Exploring short-term leaf-litter decomposition dynamics in a Mediterranean ecosystem: dependence on litter type and site conditions. Plant Soil 358:323–335Alvarez A, Gracia M, Vayreda J, Retana J (2012) Patterns of fuel types and crown fire potential in Pinus halepensis forests in the Western Mediterranean Basin. For Ecol Manage 270:282–290Austin AT, Vivanco L (2006) Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation. Nature 442:555–558Bates JD, Svejcar TS, Miller RF (2007) Litter decomposition in cut and uncut western juniper woodlands. J Arid Environ 70:222–236Binkley D (2008) Three key points in the design of forest experiments. For Ecol Manage 255:2022–2023Blair JM, Crossley DA Jr (1988) Litter decomposition, nitrogen dynamics and litter microarthropods in a southern Appalachian hardwood forest 8 years following clearcutting. J Appl Ecol 25:683–698Blanco JA, Zavala MA, Imbert JB, Castillo FJ (2005) Sustainability of forest management practices: evaluation through a simulation model of nutrient cycling. For Ecol Manage 213:209–228Blanco JA, Imbert JB, Castillo FJ (2006) Influence of site characteristics and thinning intensity on litterfall production in two Pinus sylvestris L. forests in the western Pyrenees. For Ecol Manage 237:342–352Blanco JA, Imbert JB, Castillo FJ (2008) Nutrient return via litterfall in two contrasting Pinus sylvestris forests in the Pyrenees under different thinning intensities. For Ecol Manage 256:1840–1852Blanco JA, Imbert JB, Castillo FJ (2011) Thinning affects Pinus sylvestris needle decomposition rates and chemistry differently depending on site conditions. Biogeochemistry 106:397–414Caldentey J, Ibarra M, Hernández J (2001) Litter fluxes and decomposition in Nothofagus pumilio stands in the region of Magallanes, Chile. For Ecol Manage 148:145–157Christensen JH, Krishna Kumar K, et al. (2013) Climate phenomena and their relevance for future regional climate change. In: Stocker TF, Qin D, Plattner G-K et al (Eds.) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USACortina J, Vallejo VR (1994) Effects of clearfelling on forest floor accumulation and litter decomposition in a radiata pine plantation. For Ecol Manage 70:299–310Entry JA, Rose CL, Cromack K Jr (1991) Litter decomposition and nutrient release in ectomycorrhizal mat soils of a Douglas fir ecosystem. Soil Biol Biochem 23:285–290Fabbio G, Merlo M, Tosi V (2003) Silvicultural management in maintaining biodiversity and resistance of forests in Europe—the Mediterranean region. J Environ Manage 67:67–76Galiana F, Pérez-Badía R, Camarero E, Estruch V, Currás R (2001) Estimación de la Radiación solar incidente en pinares de Pinus halepensis sometidos a tratamientos selvícolas de cortas finales. In: Junta de Andalucía. Consejería de Medio Ambiente (Ed.) Actas del III Congreso Forestal Español. Junta de Andalucía. Granada (Original in Spanish)García-Plé C, Vanrell P, Morey M (1995) Litter fall and decomposition in a Pinus halepensis forest on Mallorca. J Veg Sci 6:17–22González Utrillas N, González Pérez E, Galiana F (2005) Variación del crecimiento diametral de la masa de pinar de carrasco en cortas finales experimentales, en los montes de Tuejar y Chelva (Valencia). IV Congreso Forestal Español. Zaragoza. Soc. Esp. Cien. For. (Original in Spanish)Guo LB, Sims REH (1999) Litter decomposition and nutrient release via litter decomposition in New Zealand eucalypt short rotation forests. Agric Ecosyst Environ 75:133–140GVA (1995) Mapa de Suelos de la Comunidad Valenciana. Chelva (666). Proyecto LUCDEME (Icona), Centro de Investigaciones sobre Desertificación y Conselleria d’Agricultura i Mig Ambient. Generalitat Valenciana. Valencia, Spain. (Original in Spanish)Hennessey TC, Dougherty PM, Cregg BM, Wittwer RF (1992) Annual variation in needle fall of a loblolly pine stand in relation to climate and stand density. For Ecol Manage 51:329–338Inagaki Y, Kuramoto S, Torii A, Shinomiya Y, Fukata H (2008) Effects of thinning on leaf-fall and leaf-litter nitrogen concentration in hinoki cypress (Chamaecyparis obtusa Endlicher) plantation stands in Japan. For Ecol Manage 255:1859–1867Jonard M, Misson L, Ponette Q (2006) Long-term thinning effects on the forest floor and the foliar nutrient status of Norway spruce stands in the Belgian Ardennes. Can J For Res 36:2684–2695Kim C, Sharik TL, Jurgensen MF (1996a) Canopy cover effects on mass loss, and nitrogen and phosphorus dynamics from decomposing litter in oak and pine stands in northern Lower Michigan. For Ecol Manage 80:13–20Kim C, Sharik TL, Jurgensen MF (1996b) Litterfall, nitrogen and phosphorus inputs at various levels of canopy removal in oak and pine stands in northern lower Michigan. Am Midl Nat 135:195–204Kim C, Son Y, Lee WK, Jeong J, Noh NJ, Kim SR, Yang AR, Ju NG (2012) Influence of forest tending (Soopkakkugi) works on litterfall and nutrient inputs in a Pinus densiflora stand. For Sci Technol 8:83–88Kimmins JP (2004) Forest ecology, a foundation for sustainable management and environmental ethics in forestry. Prentice-Hall, New JerseyKimmins JP, Mailly D, Seely B (1999) Modelling forest ecosystem net primary production: the hybrid simulation approach used in FORECAST. Ecol Modell 122:195–224Klemmedson JO, Meier CE, Campbell RE (1990) Litter fall transfers of dry matter and nutrients in ponderosa pine stands. Can J For Res 20:1105–1115Kunhamu TK, Kumar BM, Viswanath S (2009) Does thinning affect litterfall, litter decomposition, and associated nutrient release in Acacia mangium stands of Kerala in peninsular India? Can J For Res 39:792–801Lytle DE, Cronan CS (1998) Comparative soil CO2 evolution, litter decay, and root dynamics in clearcut and uncut spruce–fir forest. For Ecol Manage 103:121–128Molina AJ, Del Campo AD (2012) The effects of experimental thinning on throughfall and stemflow: a contribution towards hydrology-oriented silviculture in Aleppo pine plantations. For Ecol Manage 269:206–213Navarro FB, Romero-Freire A, Del Castillo T, Foronda A, Jiménez MN, Ripoll MA, Sánchez-Miranda A, Hutsinger L, Fernández-Ondoño E (2013) Effects of thinning on litterfall were found after years in a Pinus halepensis afforestation area at tree and stand levels. For Ecol Manage 289:354–362Olson JS (1963) Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44:322–331Pérez Cueva AJ (1994) Atlas Climático de la Comunidad Valenciana. Colección Territori nº 4. Generalitat Valenciana. Conselleria d’Obres Publiques, Urbanisme i Transport, ValenciaPetritsch R, Hasenauer H, Pietsch SA (2007) Incorporating forest growth response to thinning within biome-BGC. For Ecol Manage 242:324–336Prescott CE (1997) Effects of clearcutting and alternative silvicultural systems on rates of decomposition and nitrogen mineralization in a coastal montane coniferous forest. For Ecol Manage 95:253–260Prescott CE (2002) The influence of the forest canopy on nutrient cycling. Tree Physiol 22:1193–1200Prescott CE, Blevins LL, Staley CL (2000) Effects of clear-cutting on decomposition rates of litter and forest floor in forests of British Columbia. Can J For Res 30:1751–1757Roig S, Del Río M, Cañellas I, Montero G (2005) Litter fall in Mediterranean Pinus pinaster Ait. stands under different thinning regimes. For Ecol Manage 206:179–190Sardans J, Peñuelas J, Rodà F (2005) Changes in nutrient use efficiency, status and retranslocation in young post-fire regeneration Pinus halepensis in response to sudden N and P input, irrigation and removal of competing vegetation. Trees 19:233–250Scarascia-Mugnozza G, Oswald H, Piussi P, Radoglou K (2000) Forests of the Mediterranean region: gaps in knowledge and research needs. For Ecol Manage 132:97–109Slovik S (1997) Tree physiology. In: Hüttl RF, Schaaf W (eds) Magnesium deficiency in forest ecosystems. Kluwer Academic Publishers, London, pp 101–214Taylor BR, Parkinson D (1988) Does repeated freezing and thawing accelerate decay of leaf litter? Soil Biol Biochem 20:657–665Torras O, Saura S (2008) Effects of silvicultural treatments on forest biodiversity indicators in the Mediterranean. For Ecol Manage 255:3322–3330Trofymow JA, Barclay HJ, McCullough KM (1991) Annual rates and elemental concentrations of litter fall in thinned and fertilized Douglas-fir. Can J For Res 21:1601–1615Wallace ES, Freedman B (1986) Forest floor dynamics in a chronosequence of hardwood stands in central Nova Scotia. Can J For Res 16:293–302Whitford WG, Meentemeyer V, Seastedt TR, Cromack Jr K, Crossley Jr DA, Santos P, Todd RL, Waide JB (1981) Exceptions to the AET model: deserts and clear-cut forest. Ecology 62:275–277Yin X, Perry JA, Dixon RK (1989) Influence of canopy removal on oak forest floor decomposition. Can J For Res 19:204–21

    Modelización de la calidad de las aguas del Estany de Cullera. Construcción y calibración del modelo

    Full text link
    Dada la importancia de los problemas de eutrofización y materia orgánica se ha propuesto como objetivo principal el desarrollo de un modelo de calidad que se muestre capaz de representar la evolución de estos problemas ambientales en el ecosistema acuático del Estany de Cullera. Así, la construcción, calibración y validación de este modelo permitirá disponer de una herramienta de carácter preventivo, necesaria para poder efectuar una adecuada gestión de este paraje de indudable interés.Lado Monserrat, L. (2006). Modelización de la calidad de las aguas del Estany de Cullera. Construcción y calibración del modelo. Universitat Politècnica de València. http://hdl.handle.net/10251/34248Archivo delegad

    Determinación de la materia orgánica de un suelo

    Full text link
    Determinación de la materia orgánica de un suelohttps://media.upv.es/player/?id=7357df6f-586e-463c-9910-72959fa014deLull Noguera, C. (2009). Determinación de la materia orgánica de un suelo. http://hdl.handle.net/10251/571

    Floculación y dispersión de las arcillas

    Full text link
    Observar el efecto de la carga de los cationes sobre la floculación de las arcillashttps://media.upv.es/player/?id=0616d43c-db28-4e35-b82b-cce123f3e71cLull Noguera, C. (2009). Floculación y dispersión de las arcillas. http://hdl.handle.net/10251/571

    Descomposición de la materia orgánica del suelo

    Full text link
    Descomposición de la materia orgánica del suelohttps://media.upv.es/player/?id=13f41633-2860-4de6-8dce-1eba77f87240Lull Noguera, C. (2009). Descomposición de la materia orgánica del suelo. http://hdl.handle.net/10251/571
    corecore