687 research outputs found

    Sub-subleading soft gravitons: New symmetries of quantum gravity?

    Get PDF
    Due to seminal works of Weinberg, Cachazo and Strominger we know that tree level quantum gravity amplitudes satisfy three factorization constraints. Building on previous works which relate two of these constraints to symmetries of quantum gravity at null infinity, we present rather strong evidence that the third constraint is also equivalent to a new set of symmetries of (perturbative) quantum gravity. Our analysis implies that the symmetry group of quantum gravity may be even richer than the BMS group (or infinite dimensional extension thereof) previously considered.Comment: 5 page

    The Hamiltonian constraint in Polymer Parametrized Field Theory

    Full text link
    Recently, a generally covariant reformulation of 2 dimensional flat spacetime free scalar field theory known as Parameterised Field Theory was quantized using Loop Quantum Gravity (LQG) type `polymer' representations. Physical states were constructed, without intermediate regularization structures, by averaging over the group of gauge transformations generated by the constraints, the constraint algebra being a Lie algebra. We consider classically equivalent combinations of these constraints corresponding to a diffeomorphism and a Hamiltonian constraint, which, as in gravity, define a Dirac algebra. Our treatment of the quantum constraints parallels that of LQG and obtains the following results, expected to be of use in the construction of the quantum dynamics of LQG:(i) the (triangulated) Hamiltonian constraint acts only on vertices, its construction involves some of the same ambiguities as in LQG and its action on diffeomorphism invariant states admits a continuum limit (ii)if the regulating holonomies are in representations tailored to the edge labels of the state, all previously obtained physical states lie in the kernel of the Hamiltonian constraint, (iii) the commutator of two (density weight 1) Hamiltonian constraints as well as the operator correspondent of their classical Poisson bracket converge to zero in the continuum limit defined by diffeomorphism invariant states, and vanish on the Lewandowski- Marolf (LM) habitat (iv) the rescaled density 2 Hamiltonian constraints and their commutator are ill defined on the LM habitat despite the well defined- ness of the operator correspondent of their classical Poisson bracket there (v) there is a new habitat which supports a non-trivial representation of the Poisson- Lie algebra of density 2 constraintsComment: 53 page

    Asymptotic Symmetries and Subleading Soft Photon Theorem in Effective Field Theories

    Full text link
    In [1,2] it was shown that the subleading soft photon theorem in tree level amplitudes in massless QED is equivalent to a new class of symmetries of the theory parameterized by a vector field on the celestial sphere. In this paper, we extend these results to the subleading soft photon theorem in any Effective Field Theory containing photons and an arbitrary spectrum of massless particles. We show that the charges associated to the above class of symmetries are sensitive to certain three point functions of the theory and are corrected by irrelevant operators of specific dimensions. Our analysis shows that the subleading soft photon theorem in any tree level scattering amplitude is a statement about asymptotic symmetries of the S{\cal S}-matrix.Comment: 26 pages, 3 figure

    The Diffeomorphism Constraint Operator in Loop Quantum Gravity

    Full text link
    We construct the smeared diffeomorphism constraint operator at finite triangulation from the basic holonomy- flux operators of Loop Quantum Gravity, evaluate its continuum limit on the Lewandowski- Marolf habitat and show that the action of the continuum operator provides an anomaly free representation of the Lie algebra of diffeomorphisms of the 3- manifold. Key features of our analysis include: (i) finite triangulation approximants to the curvature, FabiF_{ab}^i of the Ashtekar- Barbero connection which involve not only small loop holonomies but also small surface fluxes as well as an explicit dependence on the edge labels of the spin network being acted on (ii) the dependence of the small loop underlying the holonomy on both the direction and magnitude of the shift vector field (iii) continuum constraint operators which do {\em not} have finite action on the kinematic Hilbert space, thus implementing a key lesson from recent studies of parameterised field theory by the authors. Features (i) and (ii) provide the first hints in LQG of a conceptual similarity with the so called "mu- bar" scheme of Loop Quantum Cosmology. We expect our work to be of use in the construction of an anomaly free quantum dynamics for LQG.Comment: 37 pages, 6 figure

    Loop Corrected Soft Photon Theorem as a Ward Identity

    Get PDF
    Recently Sahoo and Sen obtained a series of remarkable results concerning sub-leading soft photon and graviton theorems in four dimensions. Even though the S- matrix is infrared divergent, they have shown that the sub-leading soft theorems are well defined and exact statements in QED and perturbative Quantum Gravity. However unlike the well studied Cachazo-Strominger soft theorems in tree-level amplitudes, the new sub-leading soft expansion is at the order ln {\omega} (where {\omega} is the soft frequency) and the corresponding soft factors structurally show completely different properties then their tree-level counterparts. Whence it is natural to ask if these theorems are associated to asymptotic symmetries of the S-matrix. We consider this question in the context of sub-leading soft photon theorem in scalar QED and show that there are indeed an infinity of conservation laws whose Ward identities are equivalent to the loop-corrected soft photon theorem. This shows that in the case of four dimensional QED, the leading and sub-leading soft photon theorems are equivalent to Ward identities of (asymptotic) charges.Comment: 33 pages, no figure

    New symmetries for the Gravitational S-matrix

    Full text link
    In [15] we proposed a generalization of the BMS group G which is a semidirect product of supertranslations and smooth diffeomorphisms of the conformal sphere. Although an extension of BMS, G is a symmetry group of asymptotically flat space times. By taking G as a candidate symmetry group of the quantum gravity S-matrix, we argued that the Ward identities associated to the generators of Diff(S^2) were equivalent to the Cachazo-Strominger subleading soft graviton theorem. Our argument however was based on a proposed definition of the Diff(S^2) charges which we could not derive from first principles as G does not have a well defined action on the radiative phase space of gravity. Here we fill this gap and provide a first principles derivation of the Diff(S^2) charges. The result of this paper, in conjunction with the results of [4, 15] prove that the leading and subleading soft theorems are equivalent to the Ward identities associated to G.Comment: 19 page

    Asymptotic symmetries of QED and Weinberg's soft photon theorem

    Full text link
    Various equivalences between so-called soft theorems which constrain scattering amplitudes and Ward identities related to asymptotic symmetries have recently been established in gauge theories and gravity. So far these equivalences have been restricted to the case of massless matter fields, the reason being that the asymptotic symmetries are defined at null infinity. The restriction is however unnatural from the perspective of soft theorems which are insensitive to the masses of the external particles. In this work we remove the aforementioned restriction in the context of scalar QED. Inspired by the radiative phase space description of massless fields at null infinity, we introduce a manifold description of time-like infinity on which the asymptotic phase space for massive fields can be defined. The "angle dependent" large gauge transformations are shown to have a well defined action on this phase space, and the resulting Ward identities are found to be equivalent to Weinberg's soft photon theorem.Comment: 19 pages, no figure

    Asymptotic symmetries and subleading soft graviton theorem

    Full text link
    Motivated by the equivalence between soft graviton theorem and Ward identities for the supertranslation symmetries belonging to the BMS group, we propose a new extension (different from the so-called extended BMS) of the BMS group which is a semi-direct product of supertranslations and Diff(S^2). We propose a definition for the canonical generators associated to the smooth diffeomorphisms and show that the resulting Ward identities are equivalent to the subleading soft graviton theorem of Cachazo and Strominger.Comment: 25 pages, published versio
    corecore