60 research outputs found

    Evaluation of wind tunnel performance testings of an advanced 45 deg swept 8-bladed propeller at Mach numbers from 0.45 to 0.85

    Get PDF
    The increased emphasis of fuel conservation in the world and the rapid increase in the cost of jet fuel has stimulated a series of studies of both conventional and unconventional propulsion systems for commercial aircraft. The results of these studies indicate that a fuel saving of 15 to 30 percent may be realized by the use of an advanced high-speed turboprop (Prop-Fan) compared to aircraft equipped with high bypass turbofan engines of equivalent technology. The Prop-Fan propulsion system is being investigated as part of the NASA Aircraft Energy Efficient Program. This effort includes the wind tunnel testing of a series of 8 and 10-blade Prop-Fan models incorporate swept blades. Test results indicate efficiency levels near the goal of 80 percent at Mach 0.8 cruise and an altitude of 10.67 km (35,000 ft). Each successive swept model has shown improved efficiency relative to the straight blade model. The fourth model, with 45 deg swept blades reported herein, shows a net efficiency of 78.2 at the design point with a power loading of 301 kW/sq meter and a tip speed of 243.8 m/sec (800 ft/sec.)

    School Evaluation: an exploration of the impact of evaluation processes on the staff in an Irish post-primary school.

    Get PDF

    Unified aeroacoustics analysis for high speed turboprop aerodynamics and noise. Volume 3: Application of theory for blade loading, wakes, noise, and wing shielding

    Get PDF
    Results of the program for the generation of a computer prediction code for noise of advanced single rotation, turboprops (prop-fans) such as the SR3 model are presented. The code is based on a linearized theory developed at Hamilton Standard in which aerodynamics and acoustics are treated as a unified process. Both steady and unsteady blade loading are treated. Capabilities include prediction of steady airload distributions and associated aerodynamic performance, unsteady blade pressure response to gust interaction or blade vibration, noise fields associated with thickness and steady and unsteady loading, and wake velocity fields associated with steady loading. The code was developed on the Hamilton Standard IBM computer and has now been installed on the Cray XMP at NASA-Lewis. The work had its genesis in the frequency domain acoustic theory developed at Hamilton Standard in the late 1970s. It was found that the method used for near field noise predictions could be adapted as a lifting surface theory for aerodynamic work via the pressure potential technique that was used for both wings and ducted turbomachinery. In the first realization of the theory for propellers, the blade loading was represented in a quasi-vortex lattice form. This was upgraded to true lifting surface loading. Originally, it was believed that a purely linear approach for both aerodynamics and noise would be adequate. However, two sources of nonlinearity in the steady aerodynamics became apparent and were found to be a significant factor at takeoff conditions. The first is related to the fact that the steady axial induced velocity may be of the same order of magnitude as the flight speed and the second is the formation of leading edge vortices which increases lift and redistribute loading. Discovery and properties of prop-fan leading edge vortices were reported in two papers. The Unified AeroAcoustic Program (UAAP) capabilites are demonstrated and the theory verified by comparison with the predictions with data from tests at NASA-Lewis. Steady aerodyanmic performance, unsteady blade loading, wakes, noise, and wing and boundary layer shielding are examined

    Large scale prop-fan structural design study. Volume 1: Initial concepts

    Get PDF
    In recent years, considerable attention has been directed toward improving aircraft fuel consumption. Studies have shown that the inherent efficiency advantage that turboprop propulsion systems have demonstrated at lower cruise speeds may now be extended to the higher speeds of today's turbofan and turbojet-powered aircraft. To achieve this goal, new propeller designs will require features such as thin, high speed airfoils and aerodynamic sweep, features currently found only in wing designs for high speed aircraft. This is Volume 1 of a 2 volume study to establish structural concepts for such advanced propeller blades, to define their structural properties, to identify any new design, analysis, or fabrication techniques which were required, and to determine the structural tradeoffs involved with several blade shapes selected primarily on the basis of aero/acoustic design considerations. The feasibility of fabricating and testing dynamically scaled models of these blades for aeroelastic testing was also established. The preliminary design of a blade suitable for flight use in a testbed advanced turboprop was conducted and is described in Volume 2

    Large scale prop-fan structural design study. Volume 2: Preliminary design of SR-7

    Get PDF
    In recent years, considerable attention has been directed toward improving aircraft fuel consumption. Studies have shown that the inherent efficiency advantage that turboprop propulsion systems have demonstrated at lower cruise speeds may now be extended to the higher speeds of today's turbofan and turbojet-powered aircraft. To achieve this goal, new propeller designs will require features such as thin, high speed airfoils and aerodynamic sweep, features currently found only in wing designs for high speed aircraft. This is Volume 2 of a 2 volume study to establish structural concepts for such advanced propeller blades, to define their structural properties, to identify any new design, analysis, or fabrication techniques which were required, and to determine the structural tradeoffs involved with several blade shapes selected primarily on the basis of aero/acoustic design considerations. The feasibility of fabricating and testing dynamically scaled models of these blades for aeroelastic testing was also established. The preliminary design of a blade suitable for flight use in a testbed advanced turboprop was conducted and is described

    Parenting the Premature Infant: Potential Iatrogenesis from the Neonatal Intensive Care Experience

    Full text link
    (1) Developmental outcomes of premature infants are associated with the quality of the home environment and the level of parenting skills the family possesses. Successful development of the parenting role may be negatively influenced by the Neonatal Intensive Care Unit (NICU) environment and nursing practices. Identification of interventions that promote the development of parenting skills in the NICU can potentially improve developmental outcomes for premature infants.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73814/1/j.1524-475X.1996.00046.x.pd

    Co-bedding as a Comfort measure For Twins undergoing painful procedures (CComForT Trial)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Co-bedding, a developmental care strategy, is the practice of caring for diaper clad twins in one incubator (versus separating and caring for each infant in separate incubators), thus creating the opportunity for skin-to-skin contact and touch between the twins. In studies of mothers and their infants, maternal skin-to-skin contact has been shown to decrease procedural pain response according to both behavioral and physiological indicators in very preterm neonates. It is uncertain if this comfort is derived solely from maternal presence or from stabilization of regulatory processes from direct skin contact. The intent of this study is to compare the comfort effect of co-bedding (between twin infants who are co-bedding and those who are not) on infant pain response and physiologic stability during a tissue breaking procedure (heelstick).</p> <p>Methods/Design</p> <p>Medically stable preterm twin infants admitted to the Neonatal Intensive Care Unit will be randomly assigned to a co-bedding group or a standard care group. Pain response will be measured by physiological and videotaped facial reaction using the Premature Infant Pain Profile scale (PIPP). Recovery from the tissue breaking procedure will be determined by the length of time for heart rate and oxygen saturation to return to baseline. Sixty four sets of twins (n = 128) will be recruited into the study. Analysis and inference will be based on the intention-to-treat principle.</p> <p>Discussion</p> <p>If twin contact while co-bedding is determined to have a comforting effect for painful procedures, then changes in current neonatal care practices to include co-bedding may be an inexpensive, non invasive method to help maintain physiologic stability and decrease the long term psychological impact of procedural pain in this high risk population. Knowledge obtained from this study will also add to existing theoretical models with respect to the exact mechanism of comfort through touch.</p> <p>Trial registration</p> <p>NCT00917631</p

    Primary care multidisciplinary teams in practice: a qualitative study.

    Get PDF
    BACKGROUND: Current recommendations for strengthening the US healthcare system consider restructuring primary care into multidisciplinary teams as vital to improving quality and efficiency. Yet, approaches to the selection of team designs remain unclear. This project describes current primary care team designs, primary care professionals' perceptions of ideal team designs, and perceived facilitating factors and barriers to implementing ideal team-based care. METHODS: Qualitative study of 44 health care professionals at 6 primary care practices in North Carolina using focus group discussions and surveys. Data was analyzed using framework content analysis. RESULTS: Practices used a variety of multidisciplinary team designs with the specific design being influenced by the social and policy context in which practices were embedded. Practices overwhelmingly located barriers to adopting ideal multidisciplinary teams as being outside of their individual practices and outside of their control. Participants viewed internal organizational contexts as the major facilitators of multidisciplinary primary care teams. The majority of practices described their ideal team design as including a social worker to meet the needs of socially complex patients. CONCLUSIONS: Primary care multidisciplinary team designs vary across practices, shaped in part by contextual factors perceived as barriers outside of the practices' control. Facilitating factors within practices provide a culture of support to team members, but they are insufficient to overcome the perceived barriers. The common desire to add social workers to care teams reflects practices' struggles to meet the complex demands of patients and external agencies. Government or organizational policies should avoid one-size-fits-all approaches to multidisciplinary care teams, and instead allow primary care practices to adapt to their specific contextual circumstances.American Academy of Family Physicians Foundation’s Joint Grant Award Program [#G1401JG
    corecore