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SUMMARY

This is the 3rd volume in a 5 volume report on the aerodynamics and aeroacous-

tics of advanced turboprops. It presents applications of theoretical methods that

have been developed in other volumes as follows. Derivations of the theoretical

equations for aerodynamic performance, blade loading (steady and unsteady), wakes,

and noise are given in Volume I. Theory for acoustic shielding of propeller sources

by a swept wing is given in Volume II and theory for acoustic shielding by a fuse-

lage boundary layer is given in Volume V. Finally, Volume IV is the userts manual

for the computer code corresponding to the theory in Volume I.

The aerodynamic and acoustic methods are based on linear pressure potential

theory with corrections for non-linearity associated with axial mass flux induction

and vortex lift on the blades. Aerodynamic performance theory is compared with test

results by comparing performance maps for swept and unswept Prop-Fans at takeoff and

cruise conditions. Predictions of power absorption at cruise Mach numbers are sat-

isfactory over a wide range of blade angles and advance ratios. At takeoff Mach

numbers, theory tends to overpredict at high loading. This indicates that refine-

ments are needed in the non-linear modeling.

Unsteady blade loading methodology is first evaluated by comparing with standard

theories for gust and plunging blade response; then cases are run to establish

regimes where lift response tends to be either 2 dimensional or 3 dimensional.

Theory indicates for excitations at one and two times the shaft rotation frequency

that quasi-steady 3D blade loading methods should be adequate; at high frequencies

the blade response becomes 2 dimensional away from the blade tips.

The wake model is a combination of equations from the 3D acceleration potential

method and a 2D treatment of the blade viscous wakes. Theory is compared with wake

data from 3 Prop-Fan tests with generally good results.

Noise predictions are compared with test results for straight and swept blades

operating at takeoff and cruise conditions. On a harmonic directivity basis the

agreement is generally good with the best correlations occurring at the highest tip
relative Mach numbers.

The potential for shielding of propeller noise by the wing in a wing-mounted

installation was evaluated using a new theory developed for the purpose. By

exploiting wing sweep and the correct direction of rotation, it appears that reduc-

tions of a few dB can be expected. More sophisticated modeling and experimental

verification are needed. Shielding of propeller noise by the fuselage boundary

layer also is a significant noise reduction factor, particularly for aft-mounted

installations.



SECTION 1

INTRODUCTION

This report presents results of program for the generation of a computer pre-

diction code for noise of advanced, single rotation, turboprops (Prop-Fans) such as

the SR3 model shown in Figure I. The code is based on a linearized theory developed

at Hamilton Standard in which aerodynamics and acoustics are treated as a unified

process. Both steady and unsteady blade loading are treated. Capabilities include

prediction of steady airload distributions and associated aerodynamic performance,

unsteady blade pressure response to gust interaction or blade vibration, noise

fields associated with thickness and steady and unsteady loading, and wake velocity

fields associated with steady loading. The code was developed on the Hamilton

Standard IBM computer and has now been installed on the Cray XMP at NASA-Lewis.

The work had its genesis in the frequency domain acoustic theory developed at

Hamilton Standard (refs. 1,2,3) in the late 1970's. It was found that the method

used for near field noise predictions could be adapted as a lifting surface

theory (ref. 4) for aerodynamic work via the pressure potential (or acceleration

potential) technique that has been used for both wings and ducted turbomachinery.

In the first realization of the theory for propellers (prior to the contract), the

blade loading was represented in a quasi-vortex lattice form (ref. 5). Under the

contract, this was upgraded to true lifting surface loading. Originally, it was

believed that a purely linear approach for both aerodynamics and noise would be

adequate. However, in the course of the contract, two sources of non-linearity in

the steady aerodynamics became apparent and were found to be a significant factor at

takeoff conditions. The first is related to the fact that the steady axial induced

velocity may be of the same order of magnitude as the flight speed and the second is

the formation of leading edge vortices which increase lift and redistribute loading.

The contract was amended to deal with both of these phenomena. Discovery and prop-

erties of Prop-Fan leading edge vortices were reported in 2 technical papers during

the contract effort (refs.6,7).

The final report is divided into 5 volumes as outlined in the Abstract. In

Volume I, the theory for blade loading, wakes, and noise is derived from the linear

wave equation with monopole and dipole source terms to represent the blade thickness

and loading effects. The derivation is complete down to working formulas. The"

formulas are coded in a computer program called UAAP (for Unified AeroAcoustic

Program). Volume IV is the user's manual. The subjects of the present volume

(Volume III) are demonstration of the UAAP capabilities and verification of the

theory by comparison of predictions from UAAP with data from tests at NASA-Lewis and

the United Technologies Research Center. Separate sections are devoted to steady

aerodynamic performance, unsteady blade loading, wakes, noise, and wing and boundary

layer shielding.
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SECTION 2

BACKGROUND

This section reviews the analytical methods used for predictions and shows how

the loading, wake, and noise calculations are connected. Complete details of the

theory are given in Volume I of this report including the derivation from fundamen-

tals. However, since the derivation is lengthy, the summary below is presented to

help understand the results of this volume.

The UAAP code performs 4 distinct aero/acoustic computational functions: aero-

dynamic blade loading (steady or unsteady), propeller performance, wakes, and noise.

General output and input requirements are outlined in the table below.

INPUT AND OUTPUT OF CODE COMPONENTS

CODE

AERO LOADING

INPUT

-BLADE GEOMETRY

-OPERATING CONDITION

-(Unsteady Boundary

conditions)

OUTPUT

-LIFt DISTRIBUTION

-Steady

(or Unsteady)

-PROFILE DRAG

STEADY

PERFORMANCE

-LIFT DISTRIBUTION

-PROFILE DRAG

-OPERATING CONDITION

-INDUCED DRAG

-WAVE DRAG

-THRUST DISTRIBUTION

-TORQUE DISTRIBUTION

-EFFICIENCY

FLOW FIELDS -LIFT DISTRIBUTION

-DRAG DISTRIBUTION

-OPERATING CONDITION

-3 VELOCITY COMPONENTS

(upstream or

downstream)

NOISE -LIFT DISTRIBUTION

-DRAG DISTRIBUTION

-OPERATING CONDITION

-SPECTRA

-DIRECTIVITY

-DIAGNOSTICS

The fundamental role of a lifting surface calculation is to establish the

distribution of lift pressure over the blade surface. This is needed as input to

any performance, noise, or wake calculation. Boundary conditions are input to the

loading program in terms of the camber surface definition and twist distribution for

steady loading calculations or in terms of blade motion or gust input (unsteady

upwash) for unsteady calculations. More details on each type of calculation are

given in succeeding sections of this report.

In outline, the theoretical development in Volume I is as follows.

ing point is the linear wave equation

i aZP aq

C O

The start-

(2.1)
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in which the left side is the waveoperator acting on the pressure disturbance p
and the right side is the source representation. Also, q is the monopole(volume
injection) source strength used to represent the blade thickness effect and fis
the force per unit volume acting on the fluid and is used to represent the blade
loading. In the modeling, the volume sources act on the advancehelicoid rather
than on the actual camber surface. This amounts to linearizing the boundary condi-

tions. If it is assumed that the source strengths are known on the blade surface,

Equation 2.1 can be solved for the pressure anywhere in the field by a Green's

function integral. The result can be expressed in generalized form as the sum of

the loading and thickness effects:

P - PL + PT (2.2)

where

and

PL " fACp _L dA (2.3)

PT --fh K_T dA (2.4)

Equations 2.3 and 2.4 are general forms of the radiation formulas for near or far

field noise. The first simply states that the pressure disturbance due to loading

can be represented as a linear sum (via the integral) of contributions from each

element of blade area. ACp is the coefficient of lift pressure and _L is the loading

noise weighting function (or kernel function) that results from the Green's function

integration. Similar remarks apply to Equation 2.4 for the thickness effect where

h/b is the thickness source defined here in terms of blade chord b and h, the

distribution of thickness over chord and span.

Since the thickness is known from geometry, Equation 2.4 can be solved

directly. However, Equation 2.3 requires that the loading distribution be known or

estimated. Aerodynamic loading is computed by an inversion of the equation via the

acceleration potential method as follows. The acceleration potential is defined as

@(x,r,4,t) - _ p(x,r,4,t) (2.5)
o

where Po is the ambient density. This is converted into the velocity potential

by integrating from upstream infinity along undisturbed streamlines according to a

recipe given, for example, by Bisplinghoff, Ashley, and Halfman (ref. 8). The

velocity potential can be differentiated in any direction to find the corresponding

velocity component, again provided that the loading is known or estimated. In

particular, differentiation normal to the blade helicoidal surfaces gives the upwash

velocity we in the following form for the loading effect

wL -- ,FAcp KL dA (2.6)
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where KL is the loading kernel function. Note that wL is steady for perfor-

mance calculations and unsteady for gust interaction or blade vibration problems.

To invert this, the loading is expressed in discretized form as

ACp - _. L_ S_ (2.7)
v

where S_ is a series of prescribed shape functions (defined in Section III) for

loading and the Lv's are their coefficients, which have to be found. When Equation

2.7 is inserted into Equation 2.6, the result is

wL -f _ Lv Sv KL dA (2.8)
v

A critical step is moving the integral under the sum as follows

wL - [ L_ f Sv KL dA (2.9)

Since the shape functions and the kernel function are known, the integrals can be

evaluated without knowing the loading. If the integrals are performed for specific

field points (or control points) on the blade surface counted by p, they are func-

tions of both the mode index v and the control point index

K,, - f s,, dA (2.10)

converting Equation 2.9 into a matrix equation

W - _ e v K_v (2.11)

Control points are placed at strategic locations on the blade surface and it is

arranged so that the number of loading modes equals the number of control points so

that the matrix equation can be inverted

X K2 W. (2.12)

The boundary conditions are evaluated at the control points, giving the W's. The

loading coefficients, L_, are computed from Equation 2.12. These are used with
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Equation 2.7 to find the lift pressure. Given the lift pressure, formulas in the

form of Equations 2.3 and 2.4 can be used to compute the acoustic pressure field.
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SECTION 3

STEADY AERODYNAMIC PERFORMANCE COMPARISONS

This section presents a comparison of theoretical predictions of shaft power

coefficient with measurements from wind tunnel experiments. Propellers with

straight blades (SR-2) and swept blades (SR-3) are included at cruise Mach number

(0.80) and takeoff Mach number (0.27). Sample curves show the contributions to

shaft power of the non-linear effects of axial induction and vortex loading.

Overview of Aerodynamic Performance Method

Calculations of steady aerodynamic performance are made as follows. The blade

is divided into panels as shown in Figure 2, each tapered at constant percent chord.

The code will run from 2 to 20 panels; i0 were used for the calculations presented

herein. Control points were placed in the centers of the panels at 8 radial sta-

tions: r/R-.20, .35, .45, .55, .65, .75, .85, and .95. The .20 station is inside

the actual hub radius and was used to approximate image sources for smooth results

in the root area since the centerbody is not represented explicitly. With control

points at 8 radii, the spanwise loading is represented by an 8 term series of mode

shapes having the general appearance shown at the top right of Figure 2. Chordwise

loading is represented by I0 overlapping triangular pressure functions as shown at

the lower left. The number I pressure panel has a square root singularity as sug-

gested in the figure to give the correct mathematical behavior at the leading edge.

Predicted distributions of lift pressure are given by the sum of the modal values as

shown at the lower right in Figure 2.

For the specified paneling layout and operating condition, the matrix of influ-

ence coefficients (kernel matrix) is computed as in Equation 2.10. The elements

give the downwash at each control point for each loading mode, assuming unit ampli-

tude. Thus, if the loading were known, the downwash could be computed from Equation

2.11. However, it is the downwash that is known from the boundary conditions so

that the loading is found from the inverse matrix as in Equation 2.12. Elements of

the inverse matrix give the mode contribution for unit downwash at each control

point.

Downwash is given by consideration of boundary conditions as shown in Figure

3. For flow tangency, the flow angle must match the angle of the blade camber

surface at each of the control points (80 in this case). As indicated by the

triangles in Figure 3, the flow angle is made up of the advance angle 4o, any

blockage caused by the centerbody and blade thickness, and the turning due to blade

loading. Of these, the advance angle is given by the advance ratio and radius, the

centerbody blockage is computed via a separate axisymmetric streamline program, and

the blockage due to blade thickness is computed from formulas given in Volume I,

Section i0 of this report. It is the remaining angle _e that is produced by the

loading and computed from Equations 2.11 and 2.7.

Distributions of lift pressure are considered to act normal to the local heli-

cal advance direction, that is, normal to the 4o direction in Figure 3. This is the

convention in wing lifting surface theories and is different from lifting line

theories where the equivalent 2D lift vector is tilted back by the 3D induction

angle. Lift pressure is integrated chordwise to find lift coefficient as a function
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of radius. Thendrag is accounted for in 3 componentsas follows. Profile drag is
looked up in tables of experimental airfoil data using simple sweeptheory to adjust
camber, thickness ratio, and Machnumberto equivalent 2Dvalues. Drag coefficient
is read out as a function of computedlift from the 3Dcalculation described above.
Induced drag (or vortex drag or drag-due-to-lift) is computedin the Trefftz plane,
or far wake, by computing the energy per unit length of wake from the lifting sur-
face theory as described in VolumeI, Section II of this report. Finally, wave drag
is accounted for by computing the acoustic energy radiated as explained in VolumeI,
Sections 6 and II. For a Prop-Fan at 80%efficiency in cruise, the 20 points that
are lost are typically about 16 to vortex drag, 4 to profile effects, and about 0.I
to 0.5 to wave energy.

Calculations up to this point are based strictly on linear theory. However,
modifications are included to deal with 2 aspects of non-linearity. First, the
above calculation procedure is placed in the iteration loop shownin Figure 4 which
is designed so that the axial momentumequation is satisfied at each radial station
on a circumferentially averagedbasis. This is described in VolumeI, Section ii.

The secondaspect of non-linearity treated is vortex loading. This is done as
a direct adaptation of wing methodsfor leading edgeand tip edgevortices as sug-
gested in Figure 5. The sketch at the top showsthe leading edgevortex which forms
in the presence of sweep, relatively sharp leading edges, and high leading edge
loading. Leading edge flow separates and reattaches producing a vortex. Reduced
pressure associated with the vortex acting on the blade surface produces the extra
lift knownas vortex lift. A powerful methodof computing the lift was developed by
Polhamus(ref. 9) based on his "suction analogy". The principle is that the lift
distribution is computedfirst with a potential methodassuming that the flow is
fully attached. Results are used to computethe leading edge thrust or suction.
Then, it is recognized that with separated leading edge flow, the thrust cannot be
supported. However, the critical assumption of the theory is that the thrust re-
orients and acts at the samestrength in the lift direction as shownin the sketch
at the top right in Figure 5. Moredetail on the treatment of vortex loading is
given in the appendix, Section 9.

Lamar (ref. i0) extended Polhamus'suction analogy to deal with the tip edge
flow shownin the middle sketch in Figure 5. Flow around the tip edge, if attached,
produces a spanwise suction due to the centrifugal acceleration. With thin tip
sections, this flow will typically separate and reattach producing extra lift as
sketched at the middle right in the figure. As with the leading edge suction anal-
ogy, Lamar's methodassumesthat the magnitude of the extra lift is equal to the
strength of the spanwise suction force that would be computedwith an attached flow
method. Lamar also developed the idea of augmentedlift (ref. ii) shownat the
bottom in Figure 5. Here it is recognized for wings with finite tip chord (as
opposedto delta wings) that the vortex that is formed at the leading edge produces
lift not only along the leading edge but also as it passes over the tip chord. The
extra lift produced along the tip chord is Lamar's augmented lift.

Leading edge and tip edge suction are computed from the loading in the final

iteration of the attached flow computation as described above in conjunction with

Figure 4. Then each of the vortex loading elements is computed by adapting methods

directly from the Polhamus and Lamar references. The suction analogy computes the

distribution of leading edge vortex loading along the radius; it does not give

guidance as to the distribution of this lift component along the chord. This is

handled in the UAAP computer program with distribution functions derived based on

early Prop-Fan flow visualization results. Similarly, the suction analogy computes

-8-



the distribution of side edge force along the tip edge but does not give the span-
wise distribution of this component. This too is handled in the code via empiri-
cally derived shape functions.

Vortex loading is computedafter the axial momentumloop in Figure 4 is con-
verged. This feature is a direct mimic of the wing methodology. Since the code
does not currently recognize that vortex loading will produce extra axial induction,
the axial momentum/thrust balance is not maintained and blade loading is overpre-

dicted. This problem does not occur in wing methods since wings do not produce

axial induction. Computations described below indicate the magnitude of the problem

and suggest that vortex loading should be brought inside the axial momentum loop.

Computed Results

This section presents comparisons of predicted and test power absorption for

Prop-Fans with swept and unswept blades at simulated flight Mach numbers typical of

cruise and takeoff. Cruise Mach numbers are of interest because they include the

design condition where blade loading should be ideal. In particular, the leading

edge incidence should be such as to produce little vortex flow. Of course, tip edge

vortices are inevitable for loaded blades. The takeoff condition is very highly

loaded and significant leading edge vortex loading is expected. Test conditions and

the associated figures are given in the table below. Data are from wind tunnels at

NASA Lewis and United Technologies Research Center

Tunnel SR2 SR3

Speed (Unswept) (Swept)
.....................................

M-0.80 Figs 6 & 7 Figs 8 & 9

M-0.27 Figs I0 & II Figs 12 & 13

The test curves in Figure 6 give the power absorption for SR2 at M-0.80 as

measured during the testing reported in Reference 12. (The data shown were not

reported in the referenced report but were supplied in a private communication from

R. J. Jeracki of NASA Lewis.) Each of the 4 curves shown at the bottom represents

the increase of power with decreasing advance ratio (or increasing RPM) at constant

blade angle. The corresponding predictions match very well, particularly at the

high RPM end of the curves. Toward the low power end, the predictions are somewhat

high, but only by the equivalent of a fraction of a degree in blade angle. Figure

7 repeats the prediction for 59 degrees blade angle (the upper theoretical curve)

and also shows the prediction without non-linear effects (the lower curve). It can

be seen that non-linear axial induction and vortex loading are very small factors

for SR2 near the design point.

Figure 8 shows results for SR3 at M-0.80 plotted on a figure from Reference 13.

The agreement is similar in form to that for SR2 except that the blade angle power

correspondence is not as good. The theoretical curves were run with an approximate

accounting for blade flexibility. A NASTRAN calculation at the design condition

gave the blade twist due to centrifugal force effects. Input data sets were formed

by interpolating between the static blade and the deflected blade with a square law

relationship for RPM. Camber effects and airloads were not included. The extra

twist at the design point is computed to be 1.7 degrees at the 0.75 radius. How-
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ever, the power curves are still off by the equivalent of approximately 2 degrees in

blade angle. This is caused, at least in part, by flexibility in the blade reten-

tion system. Blades are geared to change pitch together by a pin/ring gear system

inside the hub. This is known to be flexible; in fact, the pins and gear yielded

during some of the tests. Analysis of the retention component flexibilities indi-

cates a maximum blade angle reduction at the design point of 2.5 degrees for a zero

friction system. With realistic friction, the pitch reduction is estimated to be I

to 1.5 degrees. Considering the system flexibility and the uncertainty in its

calculation, the agreement shown in Figure 8 is satisfactory. This figure does,

however, point out the need for accurate deflected geometry definition for further

verification of theoretical codes.

Figure 9 shows the non-linearity contributions for SR3 at M-0.80. Non-

linearity in axial induction is seen to be small, as it was with SR2. However,

vortex loading is more significant at the high power end of the curves.

The remaining curves in this section deal with the data at a takeoff or climb

Mach number of 0.27 with data from Reference 14. The SR2 predictions in Figure i0

show good power tracking at low loading but, at the higher powers, there tends to be

a significant over-prediction. This is believed to be caused by the fact that the

thrust associated with vortex loading is not included in the thrust/axial momentum

iteration loop, as was discussed above. Figure Ii shows the non-linearity contribu-

tions. It can be seen that the power tracking was good with axial momentum properly

balanced (middle curve) but that vortex loading added by postprocessing outside the

axial momentum loop caused the over-prediction.

Figures 12 and 13 show similar results for SR3. The vortex loading effect is

stronger because of sweep. Hence, the overprediction is more than for unswept SR-2.

-i0-



SECTION 4

UNSTEADY AERODYNAMIC LOADIN0 STUDY

The general aerodynamic loading theory derived in Volume I of this report deals

with both steady and unsteady boundary conditions. Thus, in Equation 2.12 of the

present volume, the downwash vector W can be real or complex. Real downwash repre-

sents constant conditions at the control pointsl complex values represent the ampli-

tude and phase of the unsteady downwash at a specified frequency. The frequency can

be any integer or non-integer multiple of the shaft rotation frequency. Conditions

on different blades are assumed to be identical except for a phase difference speci-

fied by a variable k that can be interpreted as the number of nodal diameters (or

cycles in the circumferential direction at any time) of the motion and loading

pattern, k also gives the interblade phase angle as a - 2_k/B, where B is the

number of blades on the rotor. The matrix of influence functions K and the loading

vector L in Equation 2.12 are also complex for unsteady loading. Equation 2.7

gives the complex lift pressure coefficient whose real and imaginary parts give the

amplitude of the lift pressure everywhere on the blades and also its phase with

respect to the input motion. The system of control points, load paneling, and

pressure representation is the same as for steady flow in Figure 2.

By proper specification of the boundary conditions, the theory can treat rigid

blades operating in a non-uniform flow field or vibrating blades in a uniform inflow

(or a combination of the two). Thus, the method is an extension of the Sears gust

interaction theory and the Theodorsen plunging and pitching airfoil theory to 3D,

compressible flow. Background on both the Sears and Theodorsen theories is given by

Bisplinghoff, Ashley, and Halfman (ref. 8). Since those theories are 2D, the pres-

sure/downwash equations could be inverted analytically. In the 3D case, the inver-

sion is numerical, as indicated by Equation 2.12. However, this permits any peri-

odic blade motion, including deformations of the camber surface.

Volume I derives the theory in detail, shows how to interpret the input and

output of the computer program, and presents a series of sample calculations. In

particular, comparisons with the Sears and Theodorsen incompressible results and

with Amiet's compressible 2D theory (ref. 15) are given. Blade planforms analyzed

in Volume I were simple, constant chord rectangular and swept shapes so that 3

dimensionality and compressibility could be studied in simplest terms. In this

volume, we study real geometry via the the SR3 Prop-Fan with angular inflow. How-

ever, first we review the comparison with the 2D Sears theory to orient the reader

to the method input and output and to discuss some important conclusions regarding 3

dimensionality.

Comparison with Sears' 2D Theory

Sears' results are outlined in Figure 14.

the origin in a flow field with mean velocity U.

with it, is the upwash gust w described by

w - woe i_ct " _/u_ (4.1)

where the frequency f is w/2_. Here we use Sears' original convention with a +

sign for time in the exponential (+iwt). Because x = Ut is a constant phase point,

The airfoil with chord b is fixed at

Superimposed on U, and convected
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it is clear the Equation 4.1 represents a gust convected with the free stream.

The standard reduced frequency parameter is based on semi-chord

ko _b/2 (4.2)
U

Since wavelength A - U/f and _ - 2_f, the reduced frequency can also be inter-

preted in terms of chord to wavelength ratio:

_b (4.3)ko - _-

For a small steady upwash wo, the incidence angle is _ - wo/U and the lift coeffi-

cient is CL - 2_. Sears' result for the unsteady case with = - w/U is

C L - 2_S(ko) (4.4)

where S(ko) is the Sears function which describes the deviation in amplitude and

phase from the steady theory. This is plotted in Figure 14 with reduced frequency

as the parameter. It can be seen that the function goes to i at 0 frequency, as

required, and diminishes in amplitude at higher frequencies. The phase first leads

the input then lags as frequency is increased.

Input for the gust cases was prepared as follows. With the -i_t sign conven-

tion of Volume I used for the 3D analysis, a sinusoial gust is described by

w - Woei'c'1/u - t) (4.5)

where _ is a streamwise coordinate measured in the helicoidal advance surface at

constant radius. 7 corresponds to x in the 2D discussion above. The input vector

W is obtained by dropping the exp(-i_t) and normalizing by the local section speed

U to get the upwash angle:

W w w° e i'_vlU (4.6)
U U

Since the program expects input in degrees, wo/U was set to i for a I° gust

amplitude. To convert _/U to input recognized by the program, we substitute

- q_, x - bX&, b - 2rTBD, _rT/V - a, and U/V - a with the result

W - cos[_ X_ + i sin _ X_ (4.7)

where q is the non-dimensional blade loading frequency, _/2_ is the shaft rotation

frequency, BD is the chord-to-diameter ratio, a-_/(advance ratio), and V is the

flight speed. Equation 4.7 is to be evaluated at the non-dimensional chordwise

locations

X&- -0.5 + (fi - 0.5)/NCP (4.8)
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where _ runs from i to NCP. I0 control points were arrayed across the 0.7 radius

line so that NCP - i0 and NSM - i. Cases for the geometry shown in Figure 15 were

run for P orders from 0 to 20 with the results shown in comparison with the Sears

function. To interpret the P order in terms of reduced frequency, the same substi-

tutions used for Equation 4.7 can be used with the definition of ko with the

result

qaBD (4.9)ko - --F--

For plotting on Figure 15, the lift output from the 3D lifting surface program was

normalized by 2_, which amounts to dividing by 0.1097 after converting to

radians. Furthermore, the complex conjugate is plotted because of the difference in

conventions on the sign of iwt in the exponentials of Equations 4.1 and 4.5.

The comparison of 2D and 3D results in Figure 15 can be interpreted as follows.

In the limit as frequency goes to 0, the steady result for a twisted flat plate

blade is reached. The lift is about 1/2 of the 2D result because of the 3D induc-

tion. This lift reduction corresponds to the aspect ratio effect, well known in

steady wing theory. More directly, the lift reduction corresponds to the tip loss

effect treated by all propeller lifting line theories where the 3D incidence is

split into an induction angle and an effective 2D incidence. At the high end of the

frequency range, 20P, the 3D lift approaches the 2D value (at least away from the

ends of the blade). This effect is also well known in unsteady wing theory (see for

example, Jordan (ref. 16)) and is a very satisfying check of the 3D theory.

Since the high and low frequency ends of the 3D curve in Figure 15 could have

been predicted a priori, the valuable part of the result is in the detail of the

transition from steady 3D behavior at low frequencies to unsteady 2D behavior at

high frequencies. The surprise was that at IP there is almost no effect of

unsteadiness. Thus, for this incompressible, unswept case, the 3D lifting surface

theory gives results which should depart only minutely from a quasi-steady lifting

line calculation. This is an important discovery and answers questions regarding

unsteady lift response effects in IP calculations that have been raised over the

past 30 years. In the past at Hamilton Standard, various analysts have attempted to

account for unsteadiness by performing a multi-azimuth steady lifting line calcula-

tion and then adjusting the amplitude and phase in a strip-wise sense by using the

Sears function. Figure 15 shows clearly that this is not correct and that, fortuit-

ously, the quasi-steady calculations should be adequate for IP and 2P, at least for

this unswept case.

This conclusion regarding unsteady effects can at this point only be applied

rigorously to the cases run so far and shown in Figure 15. However, based on other

experience with the program, it is expected to apply also up to high subsonic tip

speeds for straight blades. More cases need to be run so that rules of thumb can be

developed on the limits where quasi-steady multi-azimuth calculations can considered

accurate.

The final portion of the Sears function check is a comparison of 2D and 3D

unsteady pressure distributions. Sears' theory modifies the flat plate steady

results in amplitude and phase only. The shape of the pressure distribution stays

the same:
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ACe - 4ai_-_ S(ko) (4.10)

Comparisonsare given in Figure 16. As might be expected, the 2Dand 3Dpressure
agree closely at the high frequencies (20P) where the lift coefficients matched.
This applies to both the real and imaginary parts (in phase and out of phase) and to
the detailed behavior near the leading edge. At lower frequencies the pressures
depart from the 2D results in a way that is consistent with the lift predictions.

The distributions at the upper right in Figure 16 have the shape given by the
radical in Equation 4.10 with the characteristic square root singularity at the
leading edge and the zero (Kutta condition) at the trailing edge. Later in this
section, distributions with these characteristics are referred to as "flat plate
like."

Loading at Shaft Rotation Frequency for the SR-3 Design Point

In the calculations shown above the blades had constant chord planforms to

simplify interpretion of the results. In this section we use the actual SR-3 geom-

etry to analyze IP loading at the 0.8 Mach number design cruise condition with a 3°

angular inflow. This case, of course, has subsonic section speeds over the inner

parts of the blade and supersonic speeds beyond the 71% radius. Input unsteady

boundary conditions were prepared as shown in Figure 17. The advance triangle shown

at the left represents the undisturbed flow into the section at radius r. At flight

speed Vx, inflow at an angle @ can be represented by the crossflow velocity

Vxtan @. The maximum effect on angle of attack can be obtained by adding this to

the tangential speed _NDz as shown at the right in Figure 17. It is assumed here

that the maximum angle of attack, as given by the formulas in Figure 17 represents

the magnitude of the IP component, i.e. the harmonic contribution is ignored because

the inflow is small. The table of W0's shown was used to generate the IP input

for SR3.

The case was first run incompressibly with the results shown in Figure 18.

Because of the low frequency, there is only a small phase variation along the span.

In the mid-span area the chordwise distribution has flat plate characteristics but

toward the tip the loading is even more leading edge dominated. Nothing unusual

seems to be occuring in the root area. At 0.8 Mach number, as shown in Figure 19,

the results are more interesting. The root shows considerable interference or

cascade effects, as might be expected with 8 high solidity blades. The mid-span

area results are very much like the incompressible results just shown in Figure 19.

Recall in this regard that, although the section speeds are supersonic, the leading

edges are subsonic in the sense that Mr,lcosA < i. (A is the leading edge sweep

angle.) At the 2 outer stations, there is a loss of lift behind the tip Mach cone

as sketched at the lower right in Figure 19. This behavior is well known in wing

theories (ref. 17); its appearance in the propeller results is an important part of

the code validation. The IP loading results are summarized in terms of lift coef-

ficient amplitude and phase in Figure 20. It can be seen that the unsteady lift

coefficient is quite flat across the span. Compressibility increases the magnitude

and the phase lag.
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The 3D unsteady theory currently doesn't include any vortex loading effects. At
cruise, there shouldn't be muchof a leading edgevortex. However, there maybe
enoughlift loading from the tip edgevortex to cause significant bending stress.
This speculation should be verified by working with the steady blade pressure data

from the test in the ONERA SI wind tunnel in Modane, France (ref. 18). An example

is shown in Figure 21. It can be seen on the camber side (or suction side of the

blade) plots, shown at the left, that there is increasing pressure at the outer

measurement station. This will not be predicted by a linear theory and is probably

caused by the tip vortex rolling up over the blade end and onto the upper surface.

The data from Modane have not been integrated into section lift coefficient or

normal force coefficient form for Reference 18. However, for the purposes of this

report, data from the 3 cases at the 0.5 Mach number cruise simulation were inte-

grated approximately with the results shown in Figure 22. The middle curve has the

loading per blade and the advance ratio corresponding to the design cruise condi-

tion. This shows a high tip loading that is undoubtedly not predicted by any of the

linear methods. The non-linear buildup of this loading with blade angle is charac-

teristic of a vortex effect.
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SECTION 5

NON-UNIFORM WAKE COMPARISONS

The flow behind a loaded rotor has non-uniformities related to the blade load-

ing. Circumferentially averaged axial and tangential velocity components are

related to rotor thrust and torque, respectively. Blade-to-blade variations are

related to viscosity, trailing vortex sheets, and bound thickness and loading

effects. Wakes of Prop-Fan models have been measured with hot wire anemometers in

the UTRC acoustic wind tunnel and with a laser-doppler velocimeter in the NASA-Lewis

8ex6 e wind tunnel. Comparisons of these data with theory of Volume I of this report

provide a valuable check of the analytical method and gives insight into the wake

structure. In fact, it will be seen that most of the features of an apparently

complex wake flow pattern can be sorted out with a relatively simple wake prediction

method. Another reason for interest in the wake flow is that it is a major source

of rotor-rotor interaction noise in counter rotation propellers. Blade-to-blade

variations, which could be steady in the coordinate system of the front rotor, cause

unsteady loading on the rear rotor. Unsteady loading is the dominant source of

noise in counter rotation propellers at takeoff conditions.

This section presents comparisons of predictions from the UAAP wake prediction

code with data from 3 experiments:

. A 2 bladed SR-3 propeller model run in the UTRC acoustic

wind tunnel at a flight Mach number of 0.32. Overspeeding

the propeller simulated the cruise tip speed. Wakes were

measured with a hot wire anemometer.

. An SR-3 model with 8 blades run in the NASA 8'x6' tunnel

at the design cruise condition. Wakes were measured with

a laser-doppler velocimeter.

. One rotor of the CRP-XI propeller model run in the UTRC

acoustic wind tunnel at the cruise power coefficient and

advance ratio but with reduced flight Mach number. Wakes

were measured with a hot wire anemometer.

Wake Prediction Method

Although designated a wake prediction method, the UAAP program actually com-

putes velocity components upstream of the rotor and outside the tip radius as well

as in the wake. Sources of the velocity disturbances are the same thickness and

steady loading effects that radiate noise. Wake formulas are derived from the

general potential theory in Volume I, Section 12 of this report. A viscous wake

approximation is added with the 2 dimensional formulas of Silverstein, Katzoff, and

Bullivant (ref. 19), which are based on section drag coefficient. Since the blade

loading must be known for a wake prediction, a performance calculation run must be

done first. The computed loads are then transferred to the wake prediction section.

The potential part of the predicted disturbance contains two components. The

more important of these is the system of vortex sheets that trails the rotor to

downstream infinity. The outer edges of these sheets include the theoretically

infinite spanwise and radial components that cause a rollup of the actual wake into

distinct tip vortices at some distance downstream of the rotor. The vortex sheet
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model does not include the rollup and therefore will not be useful for very high
loading cases and for field points far downstreamof the rotor. However, for cruise
design loading and field points where a downstreamrotor would be located, the
methodworks reasonably well. The other componentof the potential field calcula-
tion is the near-field (or bound) effect. This was addedunder the current contract
and represents the boundcirculation and thickness disturbances that do not trail
into the wake. At high speeds, however, they radiate as sound and someof this
effect will be seen in the data to be discussed below.

Test/Theory Comparison for the 2 Bladed SR-3 Model

The test for this comparison was run in 1978 in the UTRC Acoustic Research

Tunnel by Dr. William Patrick. Since preparation of the first draft of this report,

an AIAA paper (ref. 20) was prepared. It includes more detail on the measuring

techniques. The operating condition was as follows.

Advance ratio - 0.90

Power coefficient - 0.0901

Tunnel Mach number - 0.32

Since the tunnel speed and drive power were limited at the time of the test, this

condition was the best means to simulate cruise operation. The tip relative Mach

number was 1.17 and the section lift coefficients were in the range typical of those

for the cruise condition.

Figure 23 shows the range of radii traversed by the hot wire probe system. The

test values of radius ratio were .6, .7, .8, .85, .9, .925, .95, .975, 1.0, and

1.025. The radial traverse was 1/2 tip chord axially downstream of the tip trailing

edge. Three specially designed probes were used in separate test runs to acquire

data required to extract the 3 velocity components. The data were signal enhanced

and digitized on-line and processed off-line to produce plots of v_lal, Vtans.ntlal, and

Vradia_ as functions of time. Because of the rotation, time corresponds to angular

location behind the rotor.

The following paragraphs present first a physical discussion of some of the

flowfield features by comparison with isolated data traces. Then figures are pre-

sented showing all of the traces and how they compare with theoretical predictions.

Figure 24 shows a typical plot of the tangential velocity component at the right.

Time on the abscissa corresponds to slightly more than a blade passing period.

Numbers shown with the trace correspond to features in the field that can be under-

stood on a 2-dimensional basis using the sketch at the left in the figure. Consider

the probe to be fixed in the flow as indicated by the X in the sketch. Also,

consider the flow field to be locked to the blade section and rotating with it.

This flow field would include (i) a bow shock, (2) a recovery region, and (3) a

trailing shock, if the Mach number is high enough, and (4) a viscous wake. The flow

pattern is dragged past the probe in the rotation direction so that the wake events

are observed in the order shown. The shock waves are felt first; however, for this

operating condition, the bow shock (which would be at location i) is suppressed by

leading edge sweep. That is, the section relative Mach number times the cosine of

the leading edge sweep angle is less than unity. There is, however, a pulse from

the mid-chord area at location 2 and a trailing edge shock is clearly seen at loca-

tion 3. In fact, the pulse in the 1-3 area looks very much like a noise pulse as
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measured by a microphone for this condition and reported, for example in Reference

22. The viscous wake produces the peak in the trace at location 4. The number 5 on

the trace at the right indicates the beginning of the pulse from the next blade.

Figure 25 shows the axial and tangential components at radius ratio 0.7, which

can be used to define sign conventions. The plots show clearly divided regions of

viscous and potential flow. For the axial component at the top, velocity is posi-

tive in the downstream direction. Thus, the viscous wakes, which are at the vortex

sheets, are negative, representing retarded flow. The potential contribution is

positive at the vortex sheets, representing a downstream impulse. This illustrates

one of the difficulties in wake prediction, namely that the viscous and potential

effects are opposed for the axial component so that partial cancellation is pre-

dicted. In the tangential component shown at the bottom in Figure 25, positive

values correspond to components in the direction of rotor rotation. Thus, viscosity

drags the wake flow in the direction of rotation and the potential flow imparts an

impulse in the same direction. This can be seen more clearly in Figure 26 which

shows a data trace at the top and the corresponding theoretical prediction at the

bottom.

As was just shown, much of the axial and tangential flow is explainable in 2D

terms. However, the radial velocity component is exclusively a 3D effect and is

discussed in the context of Figure 27. The planform at the top could represent

either a wing or a propeller blade. The variation of the loading, or circulation,

along the span produces the trailing vortex system. In fact, if F is the circu-

lation at any radius r, then the strength of the trailing vorticity at that radius

is proportional to aF/ar. Since the circulation drops very rapidly to zero at the

tip, the vorticity is strongest there. The vortex sheet is a slip surface. Under-

neath the sheet, on the side corresponding to the pressure side of the blade, the

flow near the tip is radially outward and above the sheet it is radially inward.

Simplistically, the flow leaks around the tip from the pressure side to the suction

side. At the sheet, there is a velocity jump of the form suggested at the bottom in

Figure 27. This characteristic jump does occur in the data as shown by the sample

trace in Figure 28. The sign of the jump is, of course, given by the sign of aF/ar.

At the point along the span where the circulation has its maximum value, aF/ar

changes sign, providing a powerful diagnostic tool for checking loading distribu-

tions.

Prepared by this physical discussion, we now examine the remainder of the data.

Figure 29 shows all of the experimental results: 3 velocity components at I0 radial

stations. As would be expected, the disturbances are most violent in the tip area.

The axial and tangential components there are strong and local as opposed to their

weaker, more spread out character at r/R - 0.6. In the axial velocity traces, the

sign of the potential flow pulse changes between r/R - 0.95 and 0.975 indicating

that the tip vortex lies between these 2 radii. This sign change seems to be a very

reliable locater for the vortex and is used on-line for guidance during tests. The

radial velocity component at the right in Figure 29 exhibits the jump linked above

to the variation in circulation. At r/R - 0.7 the sign of the jump changes indicat-

ing that the circulation peak is near that radius.

Figures 30 to 32 show the theory/data comparisons for the 3 velocity compo-

nents. In generating these figures certain liberties were taken which must be

explained. First, the theory curves were shifted horizontally and vertically for

the best fit. The vertical shift is justified because the blockage of the center-

body, which produces axial and radial offsets in the mean flow, is not included in

the theory. The mean value of the tangential component was very difficult to mea-
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sure accurately because of critical dependence on probe alignment. The horizontal

shift was justified because distortion due to swirl also is not included in the

analysis. Finally, the analysis does not recognize contraction of the slipstream

behind the rotor so that the tip of the theoretical vortex sheet always lies at r/R

- i. To compensate for this, the radial stations calculated were adjusted so that

the tip flow fell between the r/R- 0.95 and .975 stations as required by the flip

in axial component shown in Figure 29. The stations were adjusted on an annular

area basis according to the table below.

data calc data calc

.6 .616 .925 .954

.7 .720 .95 .979

.8 .824 .975 1.005

.85 .876 1.000 1.031

.9 .927 1.025 1.060

Tangential velocity predictions are shown first in Figure 30. They are seen to

agree well with data over the entire radial range. In particular, the split between

viscous and potential effects and between bound and trailing effects is well repre-

sented. In reducing the data at r/R - 0.975, convergence difficulties were encoun-

tered in the data reduction program so that this trace probably includes some extra

uncertainty. At the outer radii, the predicted pulse associated with bound effects

does not have the strength or sharpness of the data trace. At first this was

believed to be a failure of the velocity predictions, but further thinking suggests

that the data trace is responding to density as well as velocity waves. The data

acquisition and reduction scheme assumed incompressible flow. This was justified

because the mean flow over the hot wire probes is basically the tunnel speed (M -

0.32) plus the small amount of axial induction. Hot wires measure pu, which in

incompressible flow varies only with velocity. However, the acoustic pulse is a

density wave which influences this portion of the data trace. Analysis of data from

microphones very near the blade tips (Reference 20) indicates pressure variations

large enough to explain the pulse circled for r/R in Figure 30.

Figure 31 compares the predicted and measured axial velocity components. The

agreement in the tip area is satisfactory, particularly regarding the flip in sign

of the velocity pulse at the tip vortex. At inboard radii, it can be seen for this

component that the viscous wake is underpredicted. Since the vector sum of the

axial and tangential components is approximately correct, the error may be due to

neglect of changes in flow direction induced by rotor loading. Also, at radius

ratios from .8 to .9 the potential velocity pulse is predicted to be much stronger

than the test indicates. The reason for this has not yet been established but could

also be associated with angle changes in the mean flow.

Finally, Figure 32 gives the comparisons for the radial velocity component.

Again the general characteristics are well predicted, particularly in the tip area.

The major discrepancies are at the inner radii where the magnitude of the velocity

jump is overpredicted. The change in the sign of the velocity jump is predicted to

occur slightly outboard of that for the data. This suggests that the loading dis-

tribution may not be quite correct. There seems to be some radial viscous flow shed

from the blade boundary layer. This effect is not included in the theoretical

model. At r/R - .90 and .925 the negative part of the pulse after the jump is not

correctly predicted. Separate analysis suggests that this is caused by rollup of

the wake, which is currently neglected in the theory.
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Test/Theory Comparison for the SR-3 Prop-Fan

Data in this section were acquired and reported by Serafini, Sullivan, and

Neumann ref. 22). The test was in the NASA-Lewis 8'x6' wind tunnel using the 2'

diameter 8 bladed SR-3 model. This seems to be the only data at the full cruise

Mach number (0.8), the design advance ratio (3.06), and the design power coefficient

(actually slightly higher at 1.8). A laser velocimeter was used to obtain the 3

velocity components. This was required since hot wires are difficult to use in high

speed, compressible flows due to fragility and difficulties in data reduction. In

principle, the LV system measures velocity specifically so that questions of density
waves mentioned above do not arise.

Comparisons are made with data from the 2 traversing planes indicated in Figure

33. The closest axial station, x/R - 0.89, was nearly grazing the blade tip. The

UAAP wake program has not been designed to converge well this close to the blades

and produces unreliable results, as will be seen. This is not an intrinsic limita-

tion of the method; wake predictions are not usually needed in this region and the

extra coding effort needed to improve accuracy in this region could not be justi-
fied.

Figure 34 compares the circumferentially averaged tangential velocity with

predictions. This is related to the radial distribution of torque on the rotor and

indicates a good airload prediction. The variations in the first 3 data points are

not reproduced but otherwise agreement with data is excellent.

The remaining figures in this section deal with blade to blade variations in

velocity components. For reasons given above in conjunction with the hot wire data,

placement of the theoretical curves was adjusted horizontally and vertically with

respect to the data curves to produce the best fit. Actual test radii were used for

the calculations. Figure 35 shows the radial velocity at a station just outside the

tip to be well predicted at both axial stations. The difference between the two

curves is mainly a phase shift.

Figure 36 shows the corresponding axial velocity curves outside the blade tips

at r/R - 1.08. Agreement at the downstream station is excellent but the prediction

at the x/R - 0.89 station shows too strong a velocity pulse, possibly because of the

convergence problem mentioned above. Axial velocity curves at radii just inside and

just outside the tip vortex are shown in Figure 37. These exhibit the required

inversion of the pulse at the tip and are qualitatively quite good. Detailed agree-

ment suffers from being too close to the blade tip. The tangential component is

shown in Figure 38; similar remarks apply.

Test/Theory Comparison for a Single Rotor from CRP-XI

The rear rotor of the CRP-XI Prop-Fan model was run alone in the Acoustic

Research Tunnel at UTRC for hot wire measurements of its wake. Data were acquired

and reduced by J. Simonich and G. Tillman. The cruise condition was simulated at a

tunnel speed of 0.25 Mach by setting the design advance ratio (J - 2.85) and a blade

angle to produce the design power coefficient (Cp - 1.0). This kind of simulation

reproduces the correct distribution of flow angles across the span and yields a

distribution of lift coefficient nearly the same as that at the higher Mach number;

only the compressibility effects are absent. Wake rollup and vortex loading should
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be about the sameas in the actual cruise case. Somedata acquisition problems were
encountered and only the data considered reliable at the time this report was writ-
ten are shownherein. Since writing this report, Tillman, Simonich, and Wagnerhave
revised the data reduction process enabling data from all of the radial stations to
be presented (reference 23).

Axial and radial locations used for the probe traverse are shown in Figure 39.

Theory/data comparisons are shown in Figures 40 to 42. Axial velocity traces in

Figure 40 exhibit characteristics similar to those seen for the other two sets of

data and similar remarks apply. The pulse inversion occurs between r/R - 0.96 and

1.04 indicating the presence of the tip vortex between these two radial stations.

Similar effects are found in the tangential component traces in Figure 41. Figure

42 shows the radial velocity traces.

Conclusions from this section on wakes and others are summarized in Section 8.
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SECTION 6

NOISE THEORY VERIFICATION

Harmonic noise of single rotation Prop-Fans with steady blade loading is caused

by blade thickness and loading sources. Loading may have the classic potential flow

characteristics or it may be dominated by vortex flow effects. Which of the sources

is most important depends on propeller operating conditions. At cruise conditions,

conventional thickness and loading sources tend to dominate whereas, at takeoff

condltons, vortex loading sources become very significant. The noise test/theory

comparisons of this section are presented in two major categories: high and low

flight Mach number. Of the several sets of experimental data that could be used for

the comparisons, the NASA Jet Star flight test results for the SR-2 model (straight

blades) and the SR-3 model (swept blades) were chosen as most reliable for the high

speed conditions. For the low flight speeds, data from a single rotor of the CRP-XI

Prop-Fan model in the UTRC Acoustic Research Facility were chosen. Before the

results are presented, the noise prediction methodolgy is reviewed.

Review of Noise Calculation Methodology

The radiation formulas used for noise predictions are based on the linear wave

equation with monopole and dipole sources. The derivation is given in Volume I of

this report. Except for minor notational differences, the formulas are equivalent

to those published previously by Hanson in References i and 3. They give the noise

harmonic levels and directivity for specified values of the thickness and loading

sources. A new feature of the present work is that a means to evaluate the source

strengths via a linearized lifting surface theory as described in Section 3 of this

volume is also provided. In earlier applications of the noise theory, the thickness

source was given strictly by the blade geometry and the loading was assumed to be

potential. However, in the current application, the thickness source has been

modified to include the boundary layer displacement thickness as well as the blade

metal thickness. This is analogous to the standard boundary layer effect in airfoil

aerodynamic methods. Also, the loading source has been modified to include the

effects of the various vortex loading components shown in Figure 5. These modifica-

tions to the thickness and loading sources are described in the next paragraphs.

Treatment of Noise Sources - Data from tests of a model Prop-Fan suggested that

the addition of the boundary layer and wake displacement to the airfoil thickness

would improve prediction of noise waveforms. In Figure 43 it can be seen that the

amplitude of the positive peak is overpredicted by the theory. It appeared that

including the displacement terms would "soften" the thickness profile at the trail-

ing edge, thereby reducing the amplitude of the trailing wave, as shown at the top

in Figure 44. In order to verify this hypothesis, an analytical model of the bound-

ary layer and wake displacement thickness was developed.

The displacement is modelled in five sections; three in the boundary layer and

two in the wake. The boundary layer model was developed from a data base of two-

dimensional airfoil calculations using the TRANDES transonic computer code (ref.

25), while the wake model is based on a series of experiments performed by Cook

(ref. 26). The boundary layer is approximated by two straight lines followed by an

exponential increase to the trailing edge as shown by the curve labeled "boundary

layer disp thickness" in the top 1/2 of Figure 44. The thickness at the trailing

edge is a function of local blade section drag coefficient. In the wake, the dis-

placement thickness decays exponentially from the trailing edge value to an asymp-

totic value which extends to infinity downstream as suggested also in Figure 44.
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The use of straight line and exponential curve fits allowed the thickness function
to be transformed analytically for use in the noise calculation. The chordwise
Fourier transform for the thickness functions at the top in Figure 44 are shownat
the bottom of the samefigure. There it can be seen that the displacement thickness
does not modify the airfoil transform to large degree at low wavenumbers,but has a
significant effect at wavenumbersabove i0. Thus, the noise at blade passing
frequency might be unaffected, while a noise waveform (which is composedof many
harmonics) maybe affected.

Figure 45 showsthe effect of adding the displacement thickness term to a noise
waveformcalculation. This figure indicates that the calculated trailing wave
amplitude is reduced by the addition of displacement sources, giving improved agree-
ment with data. It should be pointed out that Tamhas shownthat non-linear propa-
gation, in the sense of sonic boomtheory, has a similar effect on noise pulses
(ref. 27).

Treatment of Loading Elements In order to determine the blade loading, an

aerodynamic calculation is done as described in Section 3 of this report with a

manual iteration on blade angle in order to obtain a close match between calculated

and measured power. Because of the power prediction errors explained in Section 3,

this procedure is necessary to obtain a realistic estimate of loading noise levels,

particularly for low speed, high power cases. For the cases considered herein the

final value of calculated power is within 3_ of the test value.

The choice of vortex load components to be applied is implicit in the aerody-

namic calculation, since all vortex components (leading edge, tip edge, and aug-

mented lift vortex) are selected by default. A further choice is determining

whether the tip edge vortex force acts in the lift (default) or radial direction.

For the power iterations, the default values were used. However, for some noise

calculations the tip edge force was assumed to be radial in order to demonstrate the

magnitude of the radial loading noise source.

The noise calculations were carried out in three steps. First, the potential

loads were calculated (using the non-linear iteration procedure) and the results

written to an intermediate data set. The vortex loading calculation then used this

information to calculate the overall blade loading and propeller performance, after

iterating manually to match shaft power, as described above. The appropriate infor-
mation was written to a second intermediate data set and these stored data were then

used to calculate radiated noise. Saving the intermediate data sets allows minor

variations, such as changing observer positions, to be run without re-running the

entire case.

A sample of the magnitude of the vortex loading and its effect on noise predic-

tions for a takeoff case are shown in Figure 46. The upper part of the figure shows

the spanwise loading distribution associated with potential flow and the added

effects of the leading edge vortex, the tip edge vortex, and the tip lift produced

by the leading edge vortex (augmented lift). The lower portion of Figure 46 gives

directivity patterns for the BPF levels associated with each of the above loading

curves. For the tip edge vortex, the suction analogy gives the magnitude and chord-

wise distribution of the loading. For performance purposes this is adequate.

However, for propeller noise prediction, the spanwise distribution of the load is

important because radiation efficiency increases rapidly with radius. This effect

is strong enough that the width of the shape functions in Figure 46 cannot be chosen

arbitrarily. The widths were chosen after some experimentation but are not neces-

sarily optimal.
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Noise Theory Evaluation for High Flight Mach Numbers

The noise levels used for comparison with calculations are those taken on the

microphone boom of the NASA JetStar (ref. 21) with tone levels reduced by 4 dB to

account for pressure reinforcement at the boom surface using the theory of Reference

29. Figure 47, taken from Reference 21, is a photograph showing the test airplane
with the SR-3 Prop-Fan installed. Test conditions for the SR-3 and SR-2 models are

listed in Table 6-I. The two columns at the right give the figure numbers where the

noise comparisons are presented. The first of those two columns relates to calcula-

tions performed using the "standard" or default input. The last column relates to

calculations presented to illustrate the effect of radial loading. Radial loading

noise calculations have the tip vortex load acting in the radial direction.

TABLE 6-I

TEST CONDITIONS AND FIGURE NUMBERS FOR HIGH SPEED CASES

Model Flight Advance Power Press-

desig- Mach ratio coeff ure

nation number J Cp alt, ft
......................

SR-3 .511 2.918 1.888 20000

SR-3 .620 2.961 1.948 30000

SR-3 .713 3.062 1.837 30000

SR-3 .787 3.029 1.828 30000

SR-2 .520 3.178 2.372 20000

SR-2 .617 3.174 1.818 30000

SR-2 .710 3.151 1.985 30000

SR-2 .787 3.186 2.094 30000

Noise directivity figures

Standard Radial Load

Calculation Calculation

.......................

48 56

49 57

50 58

51 59

52

53

54

55

Directivity and Mach Number Trends - For high speed cruise of a single rotation

Prop-Fan, the directivity of the blade passing frequency (BPF) harmonic is consid-

ered to have the greatest impact on passenger comfort. Comparisons of measured and

calculated BPF harmonic directivities are shown in Figures 48 to 55. Positive

values of observer position represent positions forward of the plane of rotation.

Note that the microphone located at the 0.525 ft visual position was inoperative

during the SR-3 flight test. The following general observations can be made.

First, the noise levels for the SR-2 and SR-3 models are similar (at a given posi-

tion) for the lower flight Mach numbers, but SR-2 is significantly noisier at the

higher flight Mach numbers. Second, the calculated directivity and peak noise levels

tend to match test data better as the flight Mach number increases. Agreement of

the theory and test data is considered very good at 0.8 Mach. At the lowest Mach

number there is a tendency to underprecict in the forward quadrant and overpredict

in the aft quadrant. Since this trend does not appear in the low speed wind tunnel

data (discussed below in this section), it may be caused by some aspect of the

flight test environment. For example, aircraft incidence increases as flight speed

is reduced, probably causing non-uniform inflow. Also, some simple calculations

with a theory similar to that in Reference 29 indicate that reflections from the

fuselage at the boom location may be significant, despite the fact that the fuselage

surface is convex. Finally, the 4 dB boom correction is based on an infinite cylin-

der model and may be too simplistic.
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Noise due to Radial Loads. Simple potential flow methods assume that flow

leaking from the pressure side of a wing or blade tip to the suction side stays

attached and thus produces a spanwise or radial force. For thin, highly loaded

tips, however, the flow is more like the center sketch of Figure 5. The flow sepa-
rates and reattaches in a manner such that the radial force reorients to the lift

direction as shown in the sketch. In fact, the assumption of the suction analogy I°

is that the force magnitude is the same whether in the radial or lift direction.

Since it is not known to what extent the flow separates in any particular case, a

numerical experiment was conducted to determine the role of the radial loading noise

source. Noise calculations were done with the tip edge force oriented radially and

results can be compared with those presented above. Although changing the side

edge force from the lift direction to the radial direction reduces the predicted

power coefficient by about 5%, no further iterations to match power were done since

the intent is to show relative magnitudes of the noise sources.

Figure 56 through 59 are plots of the BPF directivities for the SR-3 test data

and calculated noise including radial loading. Comparison of these plots with

Figures 48 through 51 indicate that radial loading makes a slight improvement to the

predictions with a small increase in the forward direction at 0.79 Mach number and a
small decrease aft at lower Mach numbers. However, it must be recognized that these

figures are provided for reference purposes only since they were done by arbitrarily

assuming that the full potential radial load could be supported at the tip. In

fact, most of the calculations produced radial load coefficients that correspond to

negative absolute pressures acting on the blade end, which, of course, is not pos-

sible. This is taken to mean that the flow cannot remain fully attached and must

indeed separate as sketched in Figure 5.

In comparing Figures 48 through 51 run in the default mode with the tip edge

suction force acting normal to the blade surface with their conterparts in Figures

56 through 59 where the edge force is radial, the reader may notice that the mono-

pole levels are slightly different. This is caused by an interaction between the

drag component of the rotated normal force and the boundary layer displacement

effect described in conjunction with Figure 44, which is driven by drag. This

interaction in the code is probably not representative of the real flow condition;

however, the effect is so small (a fraction of a dB) that no attempt was made to

eliminate it.

Trends of Peak Noise with Increasing Math Number. A valuable way to evaluate

noise trends is to conduct an experiment at constant advance ratio and constant

blade angle but with varying flight Mach number. Under these conditions the advance

angle distribution across the blade span stays constant and non-dimensional measures

of blade loading such as power coefficient, lift coefficient, and pressure coeffi-

cient remain constant except for compressibility effects. (Reynolds number influ-

ence is generally small.) Dittmar has presented noise results from this kind of

test 28 in which he plotted the maximum value of the BPF harmonic along the sideline

at any condition as a function of the tip relative Mach number. Obviously, noise

levels generally tend to increase with increasing Mach number. However, Dittmar's

results have generated considerable interest because some of his noise curves tend

to level off or even decrease at high Mach number. This has prompted speculation

that designs for higher tip speeds may be desirable.

-25-



Trends from the current study for SR-2 and SR-3 are plotted in this manner in

Figures 60 and 61. Blade angle and advance ratio (and measured power coefficient)

are almost constant for these curves. Note that the noise levels at the lowest Mach

number have been corrected to account for the difference in pressure altitude. For

both propellers, the curves exhibit a slight reduction in slope starting at a tip

relative Mach number of 1.0 but the effect is more pronounced for the SR-3 model

(with swept blades). There is no indication from the Jet Star data that the noise

levels will decrease with increasing Mach number or even level off. It is not clear

why Dittmar's plots show a more pronounced slope change but it was noted that the

slope changes in his plots were accompanied with a significant reduction in shaft

power coefficient. By contrast, power coefficient was more nearly constant for the

curves in Figures 60 and 61.

The more pronounced slope reduction for the SR-3 model data in Figure 61 com-

pared with that for SR-2 in Figure 60 can be explained by the fact that noise can-

cellation due to blade sweep increases with increasing flight Mach number. Consider

the 0.5 Mach number case where the peak measured noise radiation angle is 60 °. By

using formulas from Reference 2, it is computed that the geometric sweep (the dif-

ference in mid-chord alignment measured at the root and tip) is about 30% of the

acoustic wavelength. At 0.8 Mach number, the peak measured noise radiation angle is

58 ° and the geometric sweep is found to be 56% of the acoustic wave length. Since

ideal cancellation between 2 radii occurs with a 1/2 wavelength difference, it can

be seen that sweep is much more effective at the higher Mach number. Similar

trends were shown in Reference 2.

Noise Theory Evaluation for Low Flight Mach Number

The CRP-XI noise levels used for comparison with calculations were measured in

the Acoustic Research Facility at the United Technologies Research Center (ref. 23)

with only the rear rotor installed. The facility and microphone locations are shown

in Figure 62. Harmonic levels were obtained from narrow-band spectrum analyses

which were corrected for propagation through the shear layer. Test conditions are

listed in Table 6-11. The tunnel Mach number was 0.26 in all cases. The 3 columns

at the right give the figure numbers where the noise comparisons are presented.

TABLE 6-11

TEST CONDITIONS AND FIGURE NUMBERS FOR LOW SPEED CASES

Advance Power Noise directivity

ratio coeff figures

J Cp BPF 2X 3X

.....................

1.178 .3487 63 68 71

1.178 .6988 64 69 72

1.151 .1445 65

1.151 .4767 66

1.151 .6781 67 70

Comparisons of measured and predicted BPF tone directivities are shown in

Figures 63 - 67. Test data which were contaminated by wind tunnel background noise

have been corrected or eliminated from the plots. Again positive microphone loca-

tions are forward of the plane of rotation. Predicted noise directivities are

generally good, with the best agreement at the peak and aft locations and poorer

agreement forward of the plane of rotation. The theory underpredicts the peak noise

by 2 to 5 dB, with better agreement at high power levels. Similar results are evi-
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dent for the 2xBFP harmonic (Figures 68 - 70) and the 3xBPF harmonic (Figures 71 and

6.30), where the underprediction of the peak is from 3 to 5 dB. Reasons for these

underpredictions are explored below.

The prediction system used for the above noise comparisons is a direct applica-

tion of the acoustic analogy and, in principle, should produce more accurate

results. The sources available in the acoustic analogy are the monopole (to repre-

sent the linear thickness effect of the blade sections), the dipole (to represent

blade loading), and the quadrupole (to represent the total of the non-linear

effects). The thickness effect is far too low at these Mach numbers to be a candi-

date for major improvement. Similarly, the quadrupole source terms can be estimated

with enough accuracy to show that they are not significant at low speed. This

leaves the dipole loading term as the prime candidate for improving noise predic-

tions. The noise predictions can only be as good as the loading representation

input to the program. At this point, the sole control of the loading input is that

the test and theoretical power (and torque) match closely. In the scope of the

current effort, it has not been possible to verify details of load distributions by

comparison with data. It is not known to what extent the predicted thrust matches

measurements. For the low tip speed cases in the takeoff regime, noise predictions

are very sensitive to details of load distribution in the tip area. The tip edge

vortex and augmented lift vortex loading have been distributed using simplistic

assumptions that may be adequate for performance calculations but not for noise.

The accuracy of this modelling needs to be examined.

Conclusions from this and other sections are summarized in Section 8.
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SECTION 7

WING AND BOUNDARY LAYER SHIELDING STUDIES

The majority of this report treats noise and aerodynamics of propellers operat-

ing without any surfaces to modify flow fields or propagation paths. However,

installation effects can modify propeller inflow and cause unsteady blade loading.

Noise formulas for this effect are presented in Volume I of this report. Installa-

tion can also cause various shielding effects and two of these effects are studied

in this section. The first is shielding by the wing of noise propagating to the

fuselage wall; the second is shielding (via refraction) of noise at the wall by its

own boundary layer.

Flight conditions typical of takeoff (or climb), approach and cruise were

studied using the airplane shown in Figure 73. The flight Mach numbers associated

with these conditions were chosen to be 0.25, 0.15, and 0.8, respectively. The

propeller tip speed was 800 ft/sec for the takeoff and cruise cases, and 700 ft/sec

for the approach case. The altitude at cruise was assumed to be 35000 ft, and sea

level for the other conditions. Standard atmospheric conditions were used for the
calculations.

Wing Shielding Study

The theory for this study was developed by Amiet and is presented in Volume II

of this report. The wing is modelled as a semi-infinite plane with source and

observer locations anywhere in the flow field. Refraction at barriers has been

treated in the literature in the past but, under this contract, Amiet has added the

effects of flow and sweep of the leading edge.

The airplane used for the shielding studies is shown in Figure 73. The wing

shielding concept depends on the fact that, for high speed blades, the important

source region on the propeller disk is that area where the blades approach the

observer point at the highest Mach number. For the sense of rotation shown, this is

near the bottom of the disk. This fact, in conjunction with wing sweep, can provide

some noise shielding along the line of windows in the region indicated in Figure

73. If the propeller rotated in the opposite direction, noise in the same region

would come from both the direct path and a reflection from the top of the wing.

Since this would cause a noise increase, the most desirable configuration would be

as shown in Figure 73 with the propellers on opposite sides of the fuselage rotating

in opposite directions.

If noise propagated strictly as rays, then Figure 73 would provide all the

information to compute the shielded region. But, of course, at the frequencies of

interest, the refraction effects addressed by Amiet's theory must be considered.

For calculation purposes, the noise source region was assumed to be at 80% radius on

the blade directly approaching the observer location as shown in Figure 73. The

objective was to determine changes in noise level along the window line above the

wing due to the presence of the wing. Geometry for Amiet's theory is shown in

Figure 74. The effect of diffraction can be presented in either of two ways. The

first is as the ratio of sound pressure at the observer including diffraction

effects to the pressure which would exist in the absence of the wing. The second

addresses the fact that Amiet's monopole source does not necessarily have the same

directivity as the propeller source. In this case results are presented as the

ratio of the sound pressure at the observer to that which would exist for the sound
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ray incident on the wing leading edge at an equal observer radius. The former best
applies outside the shadowzone and the latter best represents results in the shadow
zone. Computedresults are presented in the appropriate form.

Calculations are shownin Figures 75 to 77 for the three flight Machnumbers.
It can be seen that the wing shielding has a stronger effect at the high Machnumber
condition, but is not as strong a function of frequency at cruise as at the low Mach
numbercases. This is partly due to the different Machnumber, but the different
speed of sound at the cruise altitude has someeffect since a characteristic vari-
able is sound frequency/speed of sound. In order to determine the noise levels at
the observer, the values shownin Figures 75-77 should be added to calculated noise
levels. For the wing shadowzone, the appropriate noise level to be corrected is
that calculated at the intersection of the propagation path with the wing leading
edge.

Boundary Layer Transmission and Fuselage Reflection

The theory for this study was developed by Hanson and Magliozzi and presented

in Volume V of this report, and is somewhat condensed form in Reference 29. It

models the fuselage as an infinitely long circular cylinder with a boundary layer

profile that is constant along its length and circumference. The propeller is

modelled as a compact thickness source rotating at an effective radius which is user

selected. The default value of 0.8 times the propeller radius was used for the

study reported herein. The theory works by matching solutions to the acoustic wave

equation at the boundary layer edge. Outside the boundary layer, the convected wave

equation is used without shear terms and includes the wave incident from the propel-

ler and the reflected wave. Inside the layer the shear term is included in the

solution and the pressure is found by numerical integration. The method was origi-

nally developed to help understand noise data from the Jet Star (Figure 47), which

showed large attenuation of noise forward of the plane of rotation for high flight

numbers. The objective of the present work is to assess the effect of boundary

layer refraction and fuselage scattering for more representative geometry and scale.

For the purpose of this study, the boundary layer velocity profile was assumed

to follow a 1/7 power law (typical of a turbulent boundary layer) and its thickness

was assumed to be I0 cm (4 in.). Calculated results for noise transmission through

a boundary layer are in the form of a noise level with boundary layer effects refer-

enced to the direct path noise level at the observer. Effects of scattering at the

fuselage (which for an infinite fuselage radius would give a 6 dB noise increase)

are included in the calculation. Scattering effects for the configuration studied

are predicted to be from +4.5 to +6.0 dB, depending on frequency. Boundary layer

effects were found to be less than i dB for the first three harmonics of blade

passing frequency at 0.15 and 0.25 flight Mach numbers and therefore are not plotted
here. The studies in Volume V have shown that boundary layer effects are relatively

small up to 0.6 Mach number, where a rapid increase in the effect begins. The

calculated results for 0.8 Mach number are presented in Figure 78. Here it can be

seen that boundary layer effects can cause substantial noise reductions at forward

locations, even at the blade passing frequency harmonic. Aft locations are not

significantly affected by boundary layer shielding. As was the case for wing

shielding, the noise level at the fuselage surface is obtained by adding the values

from Figure 78 to calculated free space noise levels.

The calculations for Figure 78 were based on a compact representation of the

thickness source. Theory has been derived in Volume V for distributed thickness and

-29-



loading sources, but these moregeneral equations have not yet been coded. It is
felt that the incremental levels shownin Figure 78 are representative of the more
general problem because frequency and Machnumberare probably the dominant parame-
ters. However, this is speculation at this point and it would be best to code the
general theory so as to have a morepowerful prediction tool.

Summary of Propagation Effects

Wing shielding can reduce noise levels at the fuselage surface for all flight

conditions studied. However, boundary layer effects become important only at high

flight Mach number. For the cruise condition it appears that a proper choice of

wing-propeller geometry could substantially lower cabin interior noise levels.

Boundary layer shielding would be a benefit at forward locations; wing shielding

would be a benefit at aft locations. However, opposite rotation of the propellers

on either side of the aircraft would be required to take full advantage of wing

shielding.

Conclusions from this and other sections are summarized in Section 8.
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SECTION 8

CONCLUSIONS

A lifting surface aerodynamic panel method has been programmed for prediction

of steady and unsteady blade loading, aerodynamic performance, wakes, and noise.

The method is based on a pressure potential theory derived from the linearized wave

equation with monopole sources representing the blade thickness effect and dipole

sources representing blade loading. Two aspects of non-linearity are treated in

approximate fashion. First, the circumferentially averaged axial momentum equation

is satisfied at each radial station by an iterative method. Second, vortex loading

is added via the suction analogy.

Steady or unsteady blade loading distributions can be computed from a prescrip-

tion of blade geometry and motion. Once the loading is available, performance,

wakes, and noise can be computed by running different parts of the program. This

report presents results of analytical studies and test correlations with this new

prediction system. Also included are results of studies of boundary layer and wing

shielding based on separate theoretical developments. Conclusions from the previous

sections of this report are summarized below under the appropriate headings.

Steady Aerodynamic Performance

Power absorption curves for Prop-Fans with straight and swept blades were

compared with theoretical predictions at M-0.80 and M-0.27. Contributions of the 2

non-linear factors mentioned above were examined.

At the higher Mach number, representing cruise conditions, power absorption was

well predicted over a large range of blade angles and advance ratios. Non-linear

effects were a minor factor, particularly for the straight bladed rotor.

At the lower Mach number (0.27), representing takeoff, power absorption is well

predicted only at low powers. For blade angles and advance ratios that produced the

climb power coefficient in the model tests, the theoretical program is subject to

overprediction of power absorption that can be 50% or more. The reason for this

appears to be that vortex loading was added to the panel method as a "one shot"

calculation after the potential blade loading was computed. This is a direct adap-

tation of the wing methods, as originally planned. However, on the basis of the

evaluation reported in this volume, it appears that the vortex loading should be

brought inside the axial momentum iteration loop for better results. Until this

change is introduced, blade loading for wake or noise prediction is to be computed

by adjusting blade angle manually in the calculation to achieve the desired power

coefficient.

Unsteady Blade Loading

The unsteady version of the blade loading theory accepts as input a vector of

downwash angles representing unsteady boundary conditions at each of the control

points on the blade. Output is the distribution of unsteady lift pressure. Because

of its generality, the program can deal with non-uniform inflow problems, blade

vibration problems, or combinations of both. Blade motion can consist of pitching,

plunging, or any type of camber and twist deformation. Operating conditions with

-31-



subsonic relative speedsat the root and supersonic speedsat the tip are permitted.
Sometheory verification cases were presented in VolumeI of this report. Cases
presented in this volume lead to the following conclusions.

A comparisonwas madewith the Sears 2Dunsteady, incompressible lift response
theory by running sinusoidal gust input at the 0.75 radius. It was found at high
frequency that the 3Dresults approachedthe Sears 2D theory, as required. At low
frequency, the 3D theory showeda significant lift reduction due to induced effects
as expected from classic wing or propeller theory. At the once-per-revolution
frequency, there is only a negligible amplitude and phase shift due to unsteadiness,
a property not expected from 2Dconsiderations.

Calculations were madefor the SR-3propeller with a 3 degree angular inflow at
the cruise condition. Pressure distribution, amplitude, and phase all showedstrong
effects of compressibility. Indications are that vortex loading at the tip, which
currently is included in the steady prediction methodbut not in the unsteady
method, contributes significantly to blade unsteady bending stresses.

Wakes

The theoretical model for wakeprediction includes effects of viscosity, trail-
ing vortex sheets, and near field thickness and loading effects that do not contrib-

ute to the vortex sheets. Predictions were compared with hot wire and laser velo-

cimeter data from 3 tests of model Prop-Fan rotors. All 3 velocity components were

measured for 2 subsonic tip speed conditions and one supersonic tip speed condition.

The theory generally agrees well with the data and explains nearly all of the

observed features of the measured velocity waveforms.

The radial velocity signal has a sawtooth behavior in which the jump occurs at

the vortex sheet. The amplitude of the jump is proportional to the radial deriva-

tive of the blade circulation curve and changes sign at the maximum load point along

the radius.

Trailing vortex sheets produce a variation in the tangential direction that is

relatively smooth at middle radii and much sharper near the tips. Viscosity pro-

duces a velocity defect that is much narrower than the potential effect in the mid

blade area. In the tangential component, the velocity pulses due to viscous and

potential effects have the same sign and are therefore additive. For the axial

component the opposite condition occurs so that some cancellation occurs.

The bound thickness and loading effects only seem to be important at high Mach

numbers and produce a distinctive pulse within the axial and tangential velocity

waveforms. For the supersonic tip speed case, this bound effect changes to a propa-

gating acoustic wave at the outer radii.

Noise

The noise theory accounts for the linear acoustic sources: monopoles for the

thickness effect and dipoles for the loading effect. However, some degree of non-

linearity is included in the aerodynamic calculations used to evaluate the acoustic

sources. The thickness source includes the displacement thickness of the blade

boundary layer and the loading sources include the extra loading caused by vortex
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flow. The extra loading at the tip from the tip vortex and the augmentedlift
effect from the leading edgevortex produce significant noise increases.

Comparisonsof noise predictions with data were presented in 2 series. The
first was the high Machnumberdata from the Jet Star flight tests of the SR-2and
SR-3Prop-Fans. The secondwas acoustic wind tunnel data from the front rotor of
the CRP-XImodel running near the takeoff and climb conditions.

At the high Machnumberconditions (0.5 to 0.8 Mach), directivity shapes and
levels were generally well predicted, particularly at the highest Machnumbers.
Plots of peak sideline noise with increasing flight Machnumberare also well pre-
dicted for both the SR-2and SR-3Prop-Fans. Theseplots (Figures 60 and 61)
increase monotonically with Machnumberand exhibit only a slight reduction in slope
at the high Machnumberends of the curves. There is no reason from the Jet Star
microphoneboomdata or from theory to expect a noise reduction with increased Mach
number if shaft power coefficient is held constant.

For the data at takeoff and climb conditions, agreementwith test directivity
and shapewas also generally good. There is a general tendency to underpredict by 2
to 3 dB. This lack of agreementis believed to be related to deficiencies in the
vortex loading modelsused. It appears that these models must be refined to address
the noise characteristics found in Prop-Fan measurements. The first work in vortex
modelling should be in the aerodynamicperformance area as described above.

Wing and Boundary Layer Shielding

For studies of these effects, the twin engine, tractor, wing mount configura-

tion shown in Figure 73 was used. The wing can provide significant shielding pro-

vided that the starboard propeller rotates counterclockwise and the port propeller

rotates clockwise as viewed from the front. Reductions up to 5 dB for the BPF

fundamental and higher for the higher harmonics are predicted along the line of

windows at locations aft of the wing leading edge.

Shielding of the noise at the fuselage surface by refraction in its boundary

layer is inconsequential at Mach numbers below cruise values. However, at 0.8 Mach,

substantial benefits occur at locations forward of the plane of rotation. These

conclusions are based on a compact thickness source model. This model should be

refined to include loading sources and distribution of the sources over the chord

and span.

It is concluded that, for propellers with directions of rotation chosen as

described above, the combination of wing shielding at aft locations and boundary

layer shielding at forward locations will reduce noise levels considerably compared

to predictions based on free space levels plus amplification at the fuselage sur-

face.
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SECTION 9

APPENDIX

VORTEX LOAD MODELING

This appendix explains how the suction analogy used commonly to calculate

vortex loading in wing aerodynamics has been applied to propellers. The intent was

to adapt the methods of Polhamus (ref. 9) and Lamar (refs. 10,11,30) as directly as

possible and to evaluate the results before attempting any refinements. It was

shown in the main text that this was reasonably successful except that the extra

mass induction caused by the vortex loading needs to be included in the momentum

iteration for performance calculations. The load distribution method described

below is used for both performance and for noise due to steady loading. No attempt

has yet been made to deal with unsteady vortex loading. In the following, a brief

review of wing vortex methods is given before the propeller application is descibed.

Backsround from Win_ Methods

The three components of vortex lift are sketched in Figure 5. At the top, the

flow separates at the leading edge and reattaches further downstream. The vortex

trapped between the leading edge and the reattachment point has a reduced pressure

that adds to the blade lift. Separation is enhanced by a sharp (i.e. thin) leading

edge, sweep, and high loading. Sweep enables reattachment and permits operation at

angles of attack where 2D airfoils would be well into stall. The middle sketch in

Figure 5 shows the tip edge (or side edge) vortex. There too the flow separates and

reattaches on the wing (or blade) upper surface and causes extra lift.

The leading edge vortex lift can be computed from the suction analogy developed

by Polhamus and extended to the side edge vortex by Lamar. The suction analogy

works as follows. With attached flow, leading edge thrust develops because flow

accelerates to high speed from the stagnation point on the pressure side of the wing

around the leading edge. In theory, the suction force is independent of leading

edge thickness because the effect of smaller frontal area is offset by higher accel-

eration. In practice with sharp edges and high loading however, the flow separates

as shown in Section A-A of Figure 5 and a vortex forms on the forward part of upper

surface. The basic tenet of the suction analogy is that the magnitude of the addi-

tional lift force is the same as that of the leading edge thrust; only the orienta-

tion changes. Thus, if a means exists to compute leading edge thrust under the

assumption of attached flow, the vortex lift is simply a vector with the same magni-

tude but oriented normal to the surface on which it acts. Exactly the same prin-

ciple applies for the tip edge vortex as suggested in the middle sketch of Figure 5.

In this case, the radial suction force is computed under the assumption of attached

flow and then rotated into the direction normal to the blade upper surface.

Augmented lift, suggested by the bottom sketch in Figure 5 is slightly differ-

ent. The idea here is that the leading edge vortex which forms and acts at the

leading edge also sweeps across the tip and produces extra lift in that region.

This effect was first recognized by Lamar (ref. Ii) who applied it to clipped delta

wings. Since Prop-Fan tips have similar geometry, it is assumed that the effect is

valid for them also.
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Application to Propeller Loading

The formula for computing leading edge thrust can be found in several textbooks

or in Polhamus' paper (ref. 9). The procedure is to find the potential lift distri-

bution using, for example, a panel method. The leading edge thrust is given

directly by the strength of the singularity in the pressure distribution at the

leading edge. The tip edge radial force is computed from a similar analysis as

explained by Lamar (ref. 30). The procedure was also reviewed in the propeller

context by Hanson in a paper resulting from this work (ref. 6). A limitation of the

suction analogy method is that is only predicts a force per unit length along an

edge. It provides no guidance regarding distribution in the direction normal to the

edge. For example, for the leading edge vortex the method cannot give the chordwise

distribution of the vortex lift force. For a first application to the propeller

problem, it was decided to distribute these forces according to simple analytical

functions whose widths are input to the computer program by the user. The resulting

shape functions are defined as follows.

and

FLE (X) for the leading edge vortex

FR(z) for the tip edge vortex

F^uG(Z ) for the augmented vortex effect at the tip

where x is normalized chordwise distance and z is normalized radial distance.

Once the vortex loading components have been found by the above methods, they

must be manipulated to get lift and drag coefficient distributions for performance

computation. The results can be written down immediately by inspection of Figure 79

with the understanding that, by convention, lift and drag are the force components

perpendicular and parallel to the local advance direction. In the figure _ is

the local 3 dimensional angle of attack, i.e. the angle between the advance direc-

tion and the chord. 0LE is the angle between the camber line at the leading

edge and the local advance direction. With these definitions, it follows that

C L - CLpot + CsL E COS((_-gLE ) + CRFR(z ) COS_ + CSAUG FAuG(Z) COSa - CTL E sin((_-gLE) (A-l)

and

CD -- CDskin + CDinduced+ CSLE sin(_'0LE) + CRFR(Z) sina + CSAUG FAuG(Z) sin_ + CTLECOS(_-0LE)

(A-2)

where

CLpot,

CSLE

CSAU_

CTLE

CDskin

is the potential lift as computed by the panel method

is the leading edge suction coefficient

is the tip radial force coefficient (ref. 6)

is the augmented vortex coefficient

is the leading edge thrust coefficient

is the skin drag coefficient from 2D airfoil tables

CDinduc.diS induced drag from Treftz plane analysis
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From the form of Equations A-I and A-2 it can be seen that the orientation of

the lift from the leading edge vortex (via the coefficient CSLE) is taken to be

normal to the airfoil surface near the leading edge (through the a-SLE arguments in

the sines and cosines). Similarly, the leading edge thrust, which is lost in the

presence of vortex flow, would act parallel to the surface at the leading edge.

Also, it can be seen from the terms with sines and cosines of a that the force

from the tip edge vortex and the augmented effect are assumed to act normal to the
chord line.

Some comments on computation of the vortex lift coefficients are in order. The

radial suction coefficient CR is a straightforward application of Lamar's theory

as given in Reference 6. The result is a non-constant distribution of force along

the tip edge. The leading edge suction coefficient CSLz involves the leading edge

sweep angle A as shown in Figure 80. First the leading edge thrust is computed

using the potential lift from the panel method. This is considered to be the compo-

nent in the relative air direction of the leading edge suction, which acts normal to

the leading edge in the planform plane of Figure 80. Thus, the leading edge suction

is given by the thrust divided by cosine A. It is this suction force that is

rotated with constant magnitude to the surface normal direction.

The augmented lift is more difficult to adapt from wing methods because they

depend on coefficients based on the uniform flight speed. For propellers, the

variation in velocity along the span require modification of the method.

Physically, the strength of the augmented lift vortex must be given by the amount of

vorticity trailing into the downstream flow by the leading edge vortex. In the wing

procedure, this is found from the spanwise average of the circulation in the leading

edge vortex. Since the vortex lift is computed first from the potential solution,

an equivalent circulation can be determined based on the relationship Lift -

Po U Fvort.x, where #o and U are the local density and advance ratio. The circulation

for the leading edge vortex is averaged over the span, and the resulting lift is

determined based on the density, advance velocity, and chord at an effective radius.

Equations A-I and A-2 give the radial distributions of lift and drag coeffi-

cient for direct use in performance calculation. Equations for lift pressure coef-

ficient to be used in noise calculations are similar except that the shape factor

FLE(X) for the leading edge vortex force is used to distribute the pressure along

the chord.

A comparison of the propeller vortex loading predictions with Lamar's wing

theory was attempted by running a high advance ratio (J-2_) case. Lamar's calcula-

tion for a cropped delta wing are shown in Figure 81. Reading from the bottom, the

4 lift components are potential, side edge, leading edge, and augmented. Figure 82

shows the potential lift comparison and Figure 83 shows comparisons of the vortex

loading components. Overall lift is shown in Figure 84. The vortex loading compo-

nents are significantly underpredicted for reasons that are not understood at the

present. It could be that computational problems develop when the propeller code is

run at high advance ratio or it could be that there is a problem with the modeling.

Vortex load estimates depend on the linear panel method being accurate at the blade

edges; this needs to be checked. At any rate, any further work on the vortex load-

ing models should address these issues.
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SECTION 11

LIST OF SYMBOLS

a

b

C o

f

h

i

J

k o

-

fi -

P

q

r

t

- ratio of tip rotational speed to flight speed - _/J

- blade section chord measured at constant radius

- ambient speed of sound

- body force in wave equation

- section thickness distribution

- _, also index for control points in radial direction when used as a

subscript

- index for radial mode shapes, Rj

- reduced frequency - _b/U

index counting control points in chordwise direction - Figure 2

index counting load elements in chordwise direction - Figure 2

- disturbance pressure

- source(monopole) strength, used to represent thickness effect

- radius in cylindrical coordinates

- time

tb = ratio of section maximum thickness to chord

x - distance forward of pitch change axis in acoustic context, normalized chord-

wise distance 7/b in unsteady aerodynamic context

zi - radius ratio at control point radius # i

B - number of blades

BD - b/D, chord to diameter ratio

Ce - section lift coefficient

CD - section drag coefficient

C_ - load element shape functions - see Figure 2

ACp - coefficient of lift pressure

Cp - power coeffient, SHP/(PoN3D 5)
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CT - thrust coefficient, thrust/(poN2D4)

D - propeller diameter

K._ - kernel function elements

L_ - loading coefficient

M - flight Machnumber

NCP - numberof loading panels

NSM - numberof spanwisemodeshapefunctions

R - propeller tip radius

Rj - shape function for radial loading elements - see Figure 2

S - Sears function

U - blade section relative speed, - aV

V - flight speed

W. - vector of downwashangles at control points

X - normalized chordwise distance, zero at mid-chord

- blade section angle of attack

_3/4 - blade angle at 3/4 radius

V

Po

(7

- coordinate at constant radius in section advance direction

- angle in cylindrical coordinates to field point

- index for control points

- index for load elements

- ambient density

- _, ratio of local blade section speed to flight speed at

radius ratio z

- unsteady loading frequency times 2_

- propeller angular speed, 2_ times shaft rotation frequency
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Figure I. Prop-Fan model SR-3
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Figure 2. Load paneling system
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Figure 3. Angles used to define boundary conditions
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Figure 4. Iteration scheme for non-linearity associated with finite axial

induction
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Figure 14 Airfoil/gust interaction problem for Sears theory. 2D, Incompressible.
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Figure 15. Propeller blade/gust

Incompressible.

interaction problem for 3D analysis.
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Figure 16. Unsteady pressure coefficients. 3D versus 2D.
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Figure 17 Input preparation for SR-3 design point with 3 degree angular inflow.

-57-



M X = 0 J = 3.057

3" ANGULAR INFLOW

- ,-- -IN PHASE

OUT OF PHASE

J

I_ _ _.__= 0.95

L
O.t_

UNSTEADY O. 3
PRESSURE _5
COEFFICIENT

_Cp O. 2

0.1

0
0 1.0

X/b

Figure 18. Unsteady loading due to angular inflow on SR-3 Prop-Fan. Incompressible.
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Figure 19. Unsteady loading due to angular inflow on SR-3 Prop-Fan. Compressible.
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Modane SI wind tunnel. Mach number - 0.50, Advance ratio - 3.067,

Power coefficient - 0.361.
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Figure 23 Range of probe traverse for 2 blade SR-3 test in UTRC wind tunnel.

Traverse was in one plane passing ½ chord downstream of blade tip.
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Figure 24 Relation between blade flow features and hot wire trace
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FiEure 56 Comparison of measured and predicted directivity of BPF tone at 0.8

diameter sideline. SR-3 model at 20000 ft. altitude, 0.51 flight

Mach number, 2.92 advance ratio, and 1.89 CP. Noise predicted with

tip force actin_ in the radialdirection. Compare with Figure 48.
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Figure 57 Comparison of measured and predicted directivity of BPF tone at 0.8

diameter sideline. SR-3 model at 30000 ft. altitude, 0.62 flight

Mach number, 2.96 advance ratio, and 1.95 CP. Noise predicted with

tip force acting in the radial direction. Compare with Figure 49.
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Figure 58 Comparison of measured and predicted directivity of BPF tone at 0.8

diameter sideline. SR-3 model at 30000 ft. altitude, 0.71 flight Mach

number, 3.06 advance ratio, and 1.84 CP. Noise predicted with tip

force acting in the radial direction. Compare with Figure 50.
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Figure 59 Comparison of measured and predicted direccivicy of BPF cone at 0.8

diameter sideline. SR-3 model at 30000 ft. altitude, 0.79 flight

Mach number, 3.03 advance ratio, and 1.83 CP. Noise predicted with

tip force acting in the radial direction. Compare with Figure 51.
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Figure 63 Comparison of measured and predicted directivity of BPF tone at 3.0

diameter sideline. CRP-Xl model at 0.26 flight Mach number, 1.18

advance ratio, and 0.3_9 CP. Noise predicted using standard (default)

procedure (tip vortex loading acts normal to blade surface).
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Figure 64 Comparison of measured and predicted directivity of BPF tone at 3.0

diameter sideline. CRP-XI model at 0.26 flight Math number, 1.18

advance ratio, and 0.699 CP. Noise predicted using standard (default)

procedure (tip vortex loading acts normal to blade surface).
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Figure 65 Comparison of measured and predicted directivity of BPF tone at 3.0
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advance ratio, and 0.145 CP. Noise predicted using standard (default)

procedure (tip vortex loading acts normal to blade surface).
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Figure 66 Comparison of measured and predicted directivity of BPF tone at 3.0

diameter sideline. CRP-XI model at 0.26 flight Mach number, 1.51

advance ratio, and 0.477 CP. Noise predicted using standard (default)

procedure (tip vortex loading acts normal to blade surface).
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Figure 67 Comparison of measured and predicted directivity of BPF tone at 3.0

diameter sideline. CRP-XI model at 0.26 flight Mach number, 1.51

advance ratio, and 0.678 CP. Noise predicted using standard (default)

procedure (tip vortex loading acts normal to blade surface).
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Figure 68 Comparison of measured and predicted directivity of 2xBPF tone at 3.0

diameter sideline. CRP-XI model at 0.26 flight Mach number, 1.18

advance ratio, and 0.349 CP. Noise predicted using standard (default)

procedure (tip vortex loading acts normal to blade surface).

-I08-



120.0

CE
13-

U")

I 110.0

0
,,--t

cu 100.0

i,I
OC

O3

o 90.0

_J
W
>
i,i
-- 80.0

W
OC

or)
co 70.0
W

z 60.0

O
CO

o_ 50 0
03

X

40.0

iiiiiiiiiiiiii

iiiii/111111iiiiiii

-16.0 -

::!_:ii_:!i:!:i!!!ii!:!!!!!!!!i!!

iiiii!iii!ii

ii//i!iiiiiiiiiiiiiiiii
iiiiiiilliiiiiiiiiiiiiiiiii

i!!ii!i!ii!!!!i!!!!!!!!!!i!i

"-i 7-:;:;

.._._.._..._..,......_ i !!!!!!!!!!!!!!i!!!!iiiiiiii!iii

iiiiiiiiiii!iiii!_

//

i::i:::ii::i:::i::::!:::i::ii:::i::: ):::i::_i:::i::::::!:::i:::i:i:i::: ___._..,_.
i i iiii i i i i i i iiiiilliiiii!ii

illiiiil_ CORRECTED DATA i:

m MONOPOLE ;i

iiiiii!iiiiii ,

12.0 -8.0 -4.0 0.0 _.0 8.0

VISUAL OBSERVER POSITION, FT

12.0

Figure 69 Comparison of measured and predicted directivity of 2xBPF tone at 3.0
diameter sideline. CRP-XI model at 0.26 flight Mach number, 1.18

advance ratio, and 0.699 CP. Noise predicted using standard (default)

procedure (tip vortex loading acts normal to blade surface).
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Figure 70 Comparison of measured and predicted directivity of 2xBPF tone at 3.0

diameter sideline. CRP-Xl model at 0.26 flight Mach number, 1.51

advance ratio, and 0.678 CP. Noise predicted using standard (default)

procedure (tip vortex loading acts normal to blade surface).
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Figure 71 Comparison of measured and predicted directivity of 3xBPF tone at 3.0
diameter sideline. GRP-XI model at 0.26 flight Math number, 1.18

advance ratio, and 0.349 CP. Noise predicted using standard (default)

procedure (tip vortex loading acts normal to blade surface).
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Figure 72 Comparison of measured and predicted directivity of 3xBPF tone at 3.0

dlameter sideline. CRP-XI model at 0.26 flight Mach number, 1.18

advance ratio, and 0.699 CP. Noise predicted using standard (default)

procedure (tip vortex loading acts normal to blade surface).
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Figure 74 Illustration of the coordinate system used in wing shielding

calculations. The geometry shown is for calculation of diffraction

at the wing leading edge.
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Figure 75 Noise reduction due to wing shielding at 0.15 Mach number. The

corrections shown are to be added to calculated noise levels.
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Figure 76 Noise reduction due to wing shielding at 0.25 Math number.
corrections shown are to be added to calculated noise levels.
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Figure 77 Noise reduction due to wing shielding at 0.8 Mach number. The

corrections shown are to be added to calculated noise levels.
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been included. The corrections shown are to be added to calculated

noise levels.
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Figure 79 Sketch of section camber line for vortex loading discussion.
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Figure 80 Sketch of blade planform for vortex loading discussion.
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Figure 81. Comparison of measured and predicted wing lift coefficients showing
the contributions of vortex lift components (taken from Ref. II)
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