3,074 research outputs found

    Prosodic transcription of Glasgow English: an evaluation study of GlaToBI

    Get PDF
    GlaToBI, a version of the ToBI prosodic transcription system which can be used to transcribe the intonation patterns of western Scottish (Glasgow) English, is currently under development. An assessment of GlaToBI, similar to the evaluation studies that were undertaken for the original ToBI system [7], and for GToBI, a version developed for German [4], has been carried out to test the new system 's reliability, learnability and comprehensiveness. The results of this study show that this adaptation of the ToBI system can be applied with the expected level of reliability to the transcription of Glasgow English. 1. INTRODUCTION Very little corpus based work has been done on the prosodic features of English dialects other than Standard American and southern British (Received Pronunciation). However, with the creation of databases such as the University of Edinburgh's HCRC Map Task corpus [1], the predominant dialect of which is western Scottish (Glasgow) English, the opportunity has arisen..

    Computed Tomography and Magnetic Resonance Imaging of Bone Tumors

    Get PDF
    Imaging is the key to diagnosing and guiding management of bone tumors. Although radiographs are the gold standard for initial imaging evaluation and may make the diagnosis, computed tomography (CT) and magnetic resonance (MR) imaging are important adjunct tools for further characterization as a benign or aggressive lesion, accurately determining matrix composition, assessing lesion extent as well as secondary involvement of nearby structures if malignant, and staging tumors when applicable. In this article, we will highlight important features of CT and MR imaging for bone tumor evaluation and review the cross-sectional imaging features of a broad spectrum of benign and malignant bone tumors

    Quantum computers based on electron spins controlled by ultra-fast, off-resonant, single optical pulses

    Get PDF
    We describe a fast quantum computer based on optically controlled electron spins in charged quantum dots that are coupled to microcavities. This scheme uses broad-band optical pulses to rotate electron spins and provide the clock signal to the system. Non-local two-qubit gates are performed by phase shifts induced by electron spins on laser pulses propagating along a shared waveguide. Numerical simulations of this scheme demonstrate high-fidelity single-qubit and two-qubit gates with operation times comparable to the inverse Zeeman frequency.Comment: 4 pages, 4 figures, introduction is clarified, the section on two-qubit gates was expanded and much more detail about gate fidelities is given, figures were modified, one figure replaced with a figure showing gate fidelities for relevant parameter

    Electrophoretic mobility of a charged colloidal particle: A computer simulation study

    Full text link
    We study the mobility of a charged colloidal particle in a constant homogeneous electric field by means of computer simulations. The simulation method combines a lattice Boltzmann scheme for the fluid with standard Langevin dynamics for the colloidal particle, which is built up from a net of bonded particles forming the surface of the colloid. The coupling between the two subsystems is introduced via friction forces. In addition explicit counterions, also coupled to the fluid, are present. We observe a non-monotonous dependence of the electrophoretic mobility on the bare colloidal charge. At low surface charge density we observe a linear increase of the mobility with bare charge, whereas at higher charges, where more than half of the ions are co-moving with the colloid, the mobility decreases with increasing bare charge.Comment: 15 pages, 8 figure

    Ultrafast optical spin echo for electron spins in semiconductors

    Full text link
    Spin-based quantum computing and magnetic resonance techniques rely on the ability to measure the coherence time, T2, of a spin system. We report on the experimental implementation of all-optical spin echo to determine the T2 time of a semiconductor electron-spin system. We use three ultrafast optical pulses to rotate spins an arbitrary angle and measure an echo signal as the time between pulses is lengthened. Unlike previous spin-echo techniques using microwaves, ultrafast optical pulses allow clean T2 measurements of systems with dephasing times T2* fast in comparison to the timescale for microwave control. This demonstration provides a step toward ultrafast optical dynamic decoupling of spin-based qubits.Comment: 4 pages, 3 figure

    Statistical Mechanics of the Fluctuating Lattice Boltzmann Equation

    Get PDF
    We propose a new formulation of the fluctuating lattice Boltzmann equation that is consistent with both equilibrium statististical mechanics and fluctuating hydrodynamics. The formalism is based on a generalized lattice-gas model, with each velocity direction occupied by many particles. We show that the most probable state of this model corresponds to the usual equilibrium distribution of the lattice Boltzmann equation. Thermal fluctuations about this equilibrium are controlled by the mean number of particles at a lattice site. Stochastic collision rules are described by a Monte Carlo process satisfying detailed balance. This allows for a straightforward derivation of discrete Langevin equations for the fluctuating modes. It is shown that all non-conserved modes should be thermalized, as first pointed out by Adhikari et al.; any other choice violates the condition of detailed balance. A Chapman-Enskog analysis is used to derive the equations of fluctuating hydrodynamics on large length and time scales; the level of fluctuations is shown to be thermodynamically consistent with the equation of state of an isothermal, ideal gas. We believe this formalism will be useful in developing new algorithms for thermal and multiphase flows.Comment: Submitted to Physical Review E-11 pages Corrected Author(s) field on submittal for

    Screening of Hydrodynamic Interactions in Semidilute Polymer Solutions: A Computer Simulation Study

    Full text link
    We study single-chain motion in semidilute solutions of polymers of length N = 1000 with excluded-volume and hydrodynamic interactions by a novel algorithm. The crossover length of the transition from Zimm (short lengths and times) to Rouse dynamics (larger scales) is proportional to the static screening length. The crossover time is the corresponding Zimm time. Our data indicate Zimm behavior at large lengths but short times. There is no hydrodynamic screening until the chains feel constraints, after which they resist the flow: "Incomplete screening" occurs in the time domain.Comment: 3 figure
    • …
    corecore