9 research outputs found

    A blocking and regularization approach to high dimensional realized covariance estimation

    Get PDF
    We introduce a regularization and blocking estimator for well-conditioned high-dimensional daily covariances using high-frequency data. Using the Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008a) kernel estimator, we estimate the covariance matrix block-wise and regularize it. A data-driven grouping of assets of similar trading frequency ensures the reduction of data loss due to refresh time sampling. In an extensive simulation study mimicking the empirical features of the S&P 1500 universe we show that the ’RnB’ estimator yields efficiency gains and outperforms competing kernel estimators for varying liquidity settings, noise-to-signal ratios, and dimensions. An empirical application of forecasting daily covariances of the S&P 500 index confirms the simulation results

    The merit of high-frequency data in portfolio allocation

    Get PDF
    This paper addresses the open debate about the usefulness of high-frequency (HF) data in large-scale portfolio allocation. Daily covariances are estimated based on HF data of the S&P 500 universe employing a blocked realized kernel estimator. We propose forecasting covariance matrices using a multi-scale spectral decomposition where volatilities, correlation eigenvalues and eigenvectors evolve on different frequencies. In an extensive out-of-sample forecasting study, we show that the proposed approach yields less risky and more diversified portfolio allocations as prevailing methods employing daily data. These performance gains hold over longer horizons than previous studies have shown

    Do High-Frequency Data Improve High-Dimensional Portfolio Allocations?

    Get PDF
    This paper addresses the open debate about the usefulness of high-frequency (HF) data in large-scale portfolio allocation. We consider the problem of constructing global minimum variance portfolios based on the constituents of the S&P 500 over a four-year period covering the 2008 financial crisis. HF-based covariance matrix predictions are obtained by applying a blocked realized kernel estimator, different smoothing windows, various regularization methods and two forecasting models. We show that HF-based predictions yield a significantly lower portfolio volatility than methods employing daily returns. Particularly during the volatile crisis period, these performance gains hold over longer horizons than previous studies have shown and translate into substantial utility gains from the perspective of an investor with pronounced risk aversion

    A Service of zbw The Merit of High-Frequency Data in Portfolio Allocation The Merit of High-Frequency Data in Portfolio Allocation *

    No full text
    Standard-Nutzungsbedingungen: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte. www.econstor.eu proper econometric models, HF data offers gains over daily data and more importantly these gains are maintained over longer horizons than previous studies have shown. We propose a Multi-Scale Spectral Components model for forecasting high-dimensional covariance matrices based on realized measures employing HF data. Extensive performance evaluation confirms that the proposed approach dominates prevailing methods and validates the intuition that HF data used properly can translate into better portfolio allocation decisions. Terms of use: Documents i

    A blocking and regularization approach to high-dimensional realized covariance estimation

    No full text
    Abstract We introduce a regularization and blocking estimator for well-conditioned high-dimensional daily covariances using high-frequency data. Using the Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008a) kernel estimator, we estimate the covariance matrix block-wise and regularize it. A data-driven grouping of assets of similar trading frequency ensures the reduction of data loss due to refresh time sampling. In an extensive simulation study mimicking the empirical features of the S&P 1500 universe we show that the 'RnB' estimator yields efficiency gains and outperforms competing kernel estimators for varying liquidity settings, noise-to-signal ratios, and dimensions. An empirical application of forecasting daily covariances of the S&P 500 index confirms the simulation results
    corecore