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1 Introduction

With the rise in mutual fund and ETF investing, managing short-horizon, high-dimensional

portfolio risk has emerged as a topic of great interest. There exists a body of literature in

methodologies for exploiting high-frequency (HF) data to estimate high-dimensional daily

covariances (see, e.g., Barndorff-Nielsen et al. (2011) or Hautsch et al. (2010)). However, when

it comes to forecasting, it is an open question whether predictions of huge covariance matrices

(and the inverses thereof) based on HF-based estimates are ultimately better than prevailing

approaches using low-frequency data. The contribution of this paper is the introduction of the

Multi-Scale Spectral Components (MSSC) model for forecasting covariance matrices and an

extensive performance evaluation which shows that HF data models can translate into better

portfolio allocation decisions over longer investment horizons than previously believed.

Various studies predicting (realized) volatility have provided mixed results with efficiency

gains resulting from the use of HF-based estimates being over shadowed by noise and pre-

diction errors resulting from a required forecasting model. Indeed, in practically relevant

vast-dimensional portfolio applications, the effects of estimation error and prediction uncer-

tainty might be even more severe. In this paper, we shed light on the value of HF data in

realistic rolling-window out-of-sample portfolio forecasting settings. Accordingly, the goal

of the paper is two-fold: First, we introduce a flexible framework to construct forecasts of

well-conditioned high-dimensional covariances based on HF data. The key idea is to decompose

estimates of daily covariance matrices into their variance components, correlation eigenvalues

and eigenvectors. Covariance conditioning is ensured by an imposed (adaptively chosen) factor

structure. To reduce the potential impact of noise, the individual covariance components are

averaged over intervals of different lengths leading to a mixture of time scales. The resulting

Multi-Scale Spectral Components (MSSC) model comprises a flexible framework to provide

empirical insights on how HF-based estimates can optimally be used to construct covariance

forecasts. Finally, we evaluate the performance of time scales mixtures, as also postulated in

extant literature, in obtaining (local) stability of forecasts while reducing the impact of noise

and estimation error.

Our second objective is to benchmark MSSC-based covariance forecasts with prevailing

approaches employing daily data returns. We compare MSSC-based predictions against fore-

casts implied by high-dimensional generalized autoregressive heteroskedasticity (GARCH)

models, factor models, shrinkage estimators and up-to-date RiskMetrics approaches based on

(regularized) exponentially weighted moving averages (EWMAs) with mixed half-lives. As

a further benchmark, we introduce a new type of RiskMetrics predictor employing HF data.

The models are evaluated by analyzing their ability to predict the realized variances of random

2



(high-dimensional) portfolios and to predict global minimum variance portfolio allocations.

All models are adaptively optimized and estimated using rolling windows over a 4-year period

covering the 2008 financial crisis. Using this setting, we aim to answer the following research

questions: (i) Do HF-based forecasts generally outperform low-frequency-based approaches and

– if yes – over which forecasting horizons? (ii) How well do naive predictions of covariance com-

ponents perform compared to corresponding dynamic forecasting models? (iii) How important

is a mixing of time scales? (iv) What are the characteristics of portfolio allocations stemming

from HF-based forecasts compared to those generated by low-frequency-based predictions?

(v) How well do the individual approaches perform in stable market periods compared to very

turbulent periods such as during the financial crisis in 2008?

The nature of this paper is empirical and application-orientated. Theory on the optimality

of HF-based covariance forecasts which are well-conditioned is not existing yet and can be

presumably only derived in very simplified and stylized frameworks. For instance, it is an open

question how covariance forecasts should be optimally regularized without losing too much of

HF-induced efficiency gains, see, e.g., the discussions in Hautsch et al. (2010) or in Lunde et al.

(2011). A further difficulty is that these effects strongly depend on the underlying performance

criterion. For instance, predictions of global minimum variance portfolio allocations (as also

used in this paper) are ultimately driven by the forecasting quality of the inverse of the covariance

matrix. Therefore, this paper’s aim is to provide a first piece of empirical evidence shedding

more light on these issues and identifying directions for future research in this area.

Our paper contributes to the literature on the estimation and forecasting of high-dimensional

covariance matrices. For estimates and forecasts being positive definite and well conditioned

one needs either to (i) impose sufficient (parametric) structure, (ii) regularize potentially ill-

conditioned estimates, (iii) have sufficiently long estimation windows directly guaranteeing

positive definiteness and well-conditioning, or (iv) sample frequently enough within a given

window. These requirements motivate several strings of the literature resulting in different

estimators. Imposing parametric structure on covariances is traditionally done within a (mul-

tivariate) GARCH framework employing daily data. Engle and Kelly (2007) introduce the

Dynamic Equi-Correlation (DECO) model which is a special case of the Dynamic Conditional

Correlation (DCC) model by Engle (2002). The assumption of equi-correlations can be seen

as a form of regularization making the model sufficiently parsimonious and tractable in vast

cross-sectional dimensions and ensures positive definiteness. The idea of aggregating low-

dimensional approaches to a high-dimensional model is put forward by Engle (2008) and Engle

et al. (2008). Recently, Noureldin et al. (2011) introduce a multivariate high-frequency-based

volatility (HEAVY) model by utilizing HF data in a GARCH framework. A similar framework
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is proposed by Hansen et al. (2010) corresponding to a multivariate version of the realized

GARCH model by Hansen et al. (2011).

Alternative conditioning methods guaranteeing positive definiteness and parsimony are

factor structures, EWMA approaches and shrinkage techniques. Factor structures are typically

imposed based on principal components or factor mimicking portfolios as, e.g., in the Fama and

French (1996) three-factor model. EWMA techniques are used by the RiskMetrics methodology.

One major industry standard, BARRA, combines these techniques with factor structures and

a mixing of different half-lives for variances and correlations (see Wang and Miller, 2004).

Shrinkage estimators, as proposed by Ledoit and Wolf (2003) and Ledoit and Wolf (2004b),

condition the covariance matrix estimate by shrinking it towards an identity or a target matrix.

As an alternative to shrinkage techniques, eigenvalue cleaning building on random matrix theory

as proposed by Laloux et al. (1999) is successfully applied to inflate noisy and less informative

eigenvalues resulting in a well-conditioned covariance matrix (for an application, see Hautsch

et al. (2010)). The estimation and forecasting quality of these different approaches ultimately

depend, however, on the underlying covariance matrix estimator and the forecasting evaluation

criterion.

The advantage of using HF data is to provide precise estimates of a daily covariance matrix

utilizing only information from very current history. Bollerslev and Zhang (2003) employ

realized variance and covariance measures based on HF returns of assets and of exchange traded

funds (ETFs) to produce daily estimates of factor loadings in a Fama-French 3-factor model.

However, several studies, such as, e.g., Andersen et al. (2006), show that realized betas are less

persistent and less stable on daily frequencies. These results motivate either using weekly or

monthly betas or to appropriately ’smooth’ daily estimates over time. Indeed, the idea of using

different sampling frequencies is in the spirit of the mixed data sampling (MIDAS) approach

by Ghysels et al. (2006) and is put forward by Kyj et al. (2009). The latter propose modeling

betas in a single factor model using low frequencies while the factor variance is estimated as the

realized variance of an ETF using HF data. A similar approach is independently proposed by

Bannouh et al. (2009).

A drawback of an ETF based approach is that ETFs are strongly correlated and there is

risk that the resulting system is colinear. We propose the MSSC model which (i) does not

require using ETF data but directly builds on estimates of daily covariances, and uses insights

from the aforementioned literature by (ii) employing a factor structure as a natural form of

regularization and (iii) allowing for aggregation (’smoothing’) of covariance components over

time.1 An advantage of the model is that it is parsimonious and computationally tractable even

1An alternative approach of constructing forecasts based on realized covariances directly is Bauer and Vorkink (2011)
who propose a matrix-log transformation of the covariance matrix. Forecasts are produced based on multivariate
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in very high dimensions. Smoothing over time allows to achieve stability without excessive loss

of information. An extensive simulation experiment demonstrates the impact of efficiency on

estimates of spectral components dynamics.

Using transaction data of the S&P 500 universe covering four years from 2006 to 2009,

we analyze the rolling window out-of-sample forecasting performance of the MSSC model

and various competing approaches to predict realized portfolio variances and global minimum

variance (GMV) portfolio allocations. We can summarize the following results: First, MSSC-

based forecasts outperform any low-frequency-based forecasting approach. This is particularly

true in turbulent (crisis) periods. We find superiority of MSSC-based forecasts up to a month

and this result suggests that Liu (2009) (analyzing 30-dimensional portfolios) underestimated

the benefits of HF data. Second, smoothing daily HF-based estimates over time is beneficial.

Estimating the correlation components over longer intervals improves the forecasting power

and supports the idea of a mixing of frequencies. Using naive (random walk) forecasts of

the individual covariance components leads to the highest forecasting performance. This

result indicates that the efficiency of the underlying estimates is more important than any

dynamic forward-iteration, e.g., based on a HAR model. The latter seems to introduce too

much modeling error deteriorating the forecasting performance. Third, of a comprehensive set

of methods considered, the MSSC model is the only approach which performs well based on

both forecasting criteria and thus is successful in predicting not only the covariance matrix but

also its inverse. This is not true for the low-frequency benchmarks which may perform well in

only one of the criteria. Finally, we show that HF-based forecasts produce (minimum variance)

portfolio allocations which are more diversified and require less short-selling positions.

The remainder of the paper is organized as follows. In Section 2, we briefly illustrate the

underlying (blocked) realized kernel estimator. Section 3 illustrates the empirical properties of

spectral components computed based on realized covariances using daily, weekly and monthly

horizons and reports simulation evidence on the impact of efficiency when dynamics of spectral

components are estimated. Section 4 presents the MSSC model and competing forecasting

approaches while Section 5 gives the forecasting results using S&P 500 data. Finally, Section 6

concludes.

HAR dynamics applied to the vector of stacked (factor regularized) matrix-log transformed covariance values.
Though the approach provides a powerful way to conveniently produce high-frequency based covariance forecasts
which are guaranteed to be positive definite, it is not necessarily parsimonious and tractable in very high dimension.
A similar argument holds for the mixed frequency approach proposed by Halbleib and Voev (2011), which combines
DCC-based correlation forecasts employing daily returns with an ARFIMA specification for realized volatilities.
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2 Realized Covariance Estimation

The underlying assumptions are those given in Barndorff-Nielsen et al. (2011). We consider a

p-dimensional log price process X = (X(1), X(2), . . . , X(p))
′

with observation times for the

i − th asset defined as t
(i)
1 , t

(i)
2 , . . .. Accordingly, the realizations of X(i) at the observation

times are given by X(i)(tj), for j = 1, 2, . . . , N (i), and i = 1, 2, . . . , p. The observed price

process, X , is assumed to be driven by the efficient price process, Y , which is modeled as a

Brownian semi-martingale defined as

Y (t) =

∫ t

0
a(u)du+

∫ t

0
σ(u)dW (u), (1)

where a(t) is a predictable locally bounded drift process, σ(t) is a càdlàg volatility matrix

process, and W (t) is a vector of independent Brownian motions. Then, market microstructure

frictions are modeled through an additive noise component as

X(i)(tj) = Y (i)(tj) + U
(i)
j , j = 0, 1, . . . , N (i), (2)

where U
(i)
j is covariance stationary and satisfies the following conditions: (i) E[U (i)

j ] = 0, and

(ii)
∑

h |hΩh| < ∞, where Ωh = Cov[Uj , Uj−h].

The object of interest is the quadratic variation of Y from day t to t+ h, i.e. [t, t+ h] with

Σt,t+h =
∫ t+h
t σ(u)σ

′
du =

∑h
j=1

∫ t+j
t+j−1 σ(u)

′
du :=

∑h
j=1Σt+j , which is to be estimated

from discretely sampled, non-synchronous, and noisy price observations.

The Multivariate Realized Kernel estimator of Barndorff-Nielsen et al. (2011) builds on

refresh time sampling (RTS) with refresh times defined as the time it takes for all the assets

in a set to trade or refresh posted prices. I.e., the first refresh time sampling point can be

defined as RFT1 = max(t
(1)
1 , . . . , t

(p)
1 ) and RFTj+1 = argmin(t(i)k |t(i)k > RFTj , ∀i). Then,

refresh time synchronization yields high frequency vector returns xj = XRFTj − XRFTj−1 ,

with j = 1, 2, . . . , n, and n is the number of refresh time observations.

Using the refresh time returns, the multivariate realized kernel is defined as

K(X) =
H∑

h=−H

k

(
h

H + 1

)
Γh, (3)
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where k(x) is a weight function of the Parzen kernel (as shown below), and Γh is a matrix of

autocovariances given by

Γh =

⎧⎨⎩
∑n

j=|h|+1 xjx
′
j−h, h ≥ 0,∑n

j=|h|+1 xj−hx
′
j , h < 0.

(4)

As shown by Barndorff-Nielsen et al. (2011), this choice of kernel function guarantees

consistency and positive definiteness of the estimator. The bandwidth parameter H is optimized

with respect to the mean squared error criterion by setting H = c∗ξ4/5n3/5, where c∗ = 3.5134,

ξ2 = ω2/
√
IQ denotes the noise-to-signal ratio, ω2 is a measure of microstructure noise

variance, and IQ is the integrated quarticity as defined in Barndorff-Nielsen and Shephard

(2002). The bandwidth parameter H is computed for each individual asset and then a global

bandwidth is selected for the entire set of assets considered. See also the web appendix of

Barndorff-Nielsen et al. (2011).

As illustrated by Hautsch et al. (2010), RTS may make inefficient use of data. This is

particularly evident if the cross-sectional dimension is high. In a numerical example Hautsch

et al. show that for cross-sections exceeding 100 more than 99% of all observations are

discarded making the estimator highly inefficient. In extreme cases, this can even induce

negative definiteness and ill-conditioning of the estimator. To overcome this deficiency and

to increase the estimator’s efficiency, Hautsch et al. (2010) propose decomposing the cross-

section of assets into appropriate groups and estimating the covariances for the corresponding

combinations of groups. In particular, the blocking strategy starts by ordering the assets in the

covariance matrix according to observation frequencies, with the most liquid asset in the top

left corner and the least liquid asset in the bottom right corner. Grouping according to trading

frequencies ensures that assets with similar arrival rates are grouped together which directly

addresses the data reduction problem. Asset clusters are then combined to form a series of

blocks of the covariance matrix, where each block is itself a covariance matrix.

Figure 1 illustrates the construction of the blocked kernel with three equal-sized asset

clusters resulting into six covariance blocks, each with a different RTS time scale. In step 1,

the entire covariance matrix is estimated which is necessary to produce the covariance between

the most liquid and least liquid assets. Accordingly, steps 2 and 3 are associated with the

covariance between the less liquid and more liquid assets, respectively. Then, steps 4 to 6

provide the covariances within each liquidity class which are estimated with highest precision

as they do not involve observations of other classes. Consequently, as a general principle of this

approach, any block of the covariance matrix is estimated utilizing data stemming only from the

directly involved (ordered) liquidity classes and any potential intermediate class (as, e.g., for

7



1

2

3

combine to form −→

4

5

6

liquid → illiquid

6

5

4

1

1

2

2

3

3

Figure 1: Visualization of the Blocking Strategy according to Hautsch et al. (2010)
Assets are ordered according to liquidity, with the most liquid asset in the top-left corner of the covariance
matrix and the least liquid asset in the bottom right corner. Covariance estimates are computed on a
series of blocks and then combined to form a multi-block estimator.

block 1 in Figure 1 utilizing data from all three liquidity classes). Hence, the precision gains of

this estimator are driven by the fact that all individual covariance blocks (except block 1) are

estimated using more effective refresh time observations and thus with higher precision than in

the original kernel. An alternative blocking scheme would be to estimate each covariance block

utilizing exclusively only those data stemming from the involved assets in the respective groups.

Lunde et al. (2011) consider a limiting case of the latter scheme estimating each covariance

entry individually.
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Hence, the resulting blocked realized kernel consists of estimates for block (rs), r, s =

1, . . . , G of the form

K(rs)(X) =

n(rs)−1∑
h=−n(rs)+1

k

(
h

H(rs) + 1

)
Γh,(rs), r, s = 1, . . . , G, (5)

Γh,(rs) =

{ ∑n(rs)

j=h+1 xj,(rs)x
′
j−h,(rs) for h ≥ 0,∑n(rs)

j=−h+1 xj+h,(rs)x
′
j,(rs) for h < 0,

(6)

k(x) =

⎧⎪⎪⎨⎪⎪⎩
1− 6x2 + 6x3 0 ≤ x ≤ 1/2,

2(1− x)3 1/2 ≤ x ≤ 1,

0 x > 1,

(7)

with H(rs) denoting the block-specific optimal bandwidth.

3 Empirical Properties of Realized Spectral Components

3.1 Time Series Properties

We employ mid-quotes from the NYSE’s Trade and Quote (TAQ) database for the constituents

of the S&P 500. We use 400 assets with the longest continuous history between January 2006

and December 2009 covering approximately 1, 000 trading days. We discard the first 15 minutes

of each day to avoid opening effects. The data are filtered eliminating obvious errors, such as bid

prices greater than ask prices, non-positive bid or ask sizes, etc. Moreover, following Hautsch

et al. (2010) outliers are eliminated when the bid ask spread is greater that 1% of the current

midquote and when the midquote price does not change. Finally, two additional filters are

employed with both using a centered mean (excluding the observation under consideration) of

50 observations as a baseline. The first is a global filter deleting entries for which the mid-quote

price deviates by more than 5 mean absolute deviations for the day. The second is a local filter

deleting entries for which the mid-quote deviated by more than 5 mean absolute deviation of 50

observations (excluding the observation under consideration).

Define Xt,s to be covariance components computed from day t to day s with Xt := Xt−1,t.

We estimate daily open-to-close covariances Σt using the realized kernel and the blocked

realized kernel based on G = 5 asset categories. The choice of G is motivated by the empirical

study by Hautsch et al. (2010). Daily covariances are aggregated to weekly covariances Σt,t+5

and monthly covariances Σt,t+20. Then, the spectral decomposition is given by

Σt,t+h = Q̃t,t+h Λt,t+h Q̃
′
t,t+h, (8)
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where Q̃t,t+h denotes the matrix of eigenvectors and Λt,t+h is the diagonal matrix of eigenvec-

tors of Σt,t+h. Correspondingly, the spectral decomposition of the correlation matrix Rt,t+h

is

Rt,t+h := V −1
t,t+hΣt,t+h V

−1
t,t+h, (9)

:= Qt,t+h Λt,t+hQ
′
t,t+h,

with Vt,t+h := diag[Σjj
t,t+h]

1/2
:= diag[σj

t,t+h], j = 1, . . . , p, denoting the diagonal matrix of

volatilities and Qt,t+h := V −1
t,t+hQ̃t,t+h.

Figures 2 and 3 show the estimated correlation eigenvalues Λt−h,t based on daily, weekly

and monthly windows using the blocked realized kernel as well as daily correlation eigenvalues

based on the “plain” realized kernel. We observe that the first (largest) eigenvalue tends to

follow its own distinct dynamics. This result already indicates that the use of HF data helps

to better extract factor structures underlying correlations. In fact, corresponding studies based

on empirical covariances estimated over long-term rolling windows of daily data (see, e.g.,

Zumbach, 2009a) yield quite different pictures with all eigenvalues closely moving in lock-steps.

Hence, estimation efficiency seems to be important for a better signal extraction which is also

supported by the finding that the blocked estimator yields an even better separation of the

eigenvalue dynamics and tends to stabilize estimates. The effect of ’averaging’ over time is

clearly visible in Figures 3. In a simulation study below, we show that the daily variations

of eigenvalues are indeed partly due to estimation error motivating the usefulness of time

aggregations.

Figure 4 compares the dynamics of plain eigenvalues Λt = Q′
tRtQt with those of eigenval-

ues projected on a long-term (monthly) basis, Λ(20)
t = Q′

t−20,tRtQt−20,t. Projected eigenvalues

are obtained based on spectral decompositions where the eigenvectors stemming from the hori-

zon of interest are replaced by monthly ones. As shown below, daily eigenvectors are rather

volatile whereas monthly ones are significantly more stable. Therefore, projecting eigenvalues

allows one to “anchor” them on a more stable (long-term) basis. As the figures show, this

step yields another way to reduce the impact of erratic effects and to better identify individual

eigenvalue dynamics. Figures 5 and 6 depict the explained variation of plain and projected

eigenvalues stemming from the different estimators. The efficiency gains induced by the blocked

kernel result in a higher relative explanatory power of the first eigenvalue. The latter can be

further increased by using long-term projected eigenvalues rather than plain values. Finally,

Figure 7 displays the autocorrelation functions of the largest correlation eigenvalue stemming

from the two competing estimators. It turns out that reductions of estimation errors allow to

better capture the high persistence in eigenvalue dynamics which is not necessarily seen if the
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2.2: Plain Kernel
Figure 2: Correlation Eigenvalues Λt (Daily), S&P500, 2006-2009
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3.1: Λt−5,t (Weekly)
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3.2: Λt−20,t (Monthly)

Figure 3: Correlation Eigenvalues, S&P500, 2006-2009, Blocked Realized Kernel

estimators are too noisy. This result is in line with Hansen and Lunde (2010) who theoretically

show that estimation noise reduces the (estimated) persistence in dynamic processes.

To measure the time variability of eigenvectors, we compute the angle between eigenvectors

in different periods,

θ
(j)
t−h,t := 2 arcsin

[
1

2
min

(∥∥Q(j)
t −Q

(j)
t−h

∥∥
2
,
∥∥Q(j)

t +Q
(j)
t−h

∥∥
2

)]
, (10)

where Q
(j)
t−h denotes the (normalized) eigenvector associated with the j-th largest eigenvalue

measured from t− h to t. Computing the minimum norm of the sum and the difference of the

eigenvectors accounts for the fact that the latter are symmetric around zero. Figures 10 and 11 in

Appendix B depict the daily, weekly and monthly variations of the eigenvectors associated with

the two largest eigenvalues. We observe that daily variations in eigenvectors can be substantial

with directional changes of the vectors ranging between 10 and 90 degrees. Again blocking

helps reducing estimation error and variability in vector orientation. Smoothing, i.e., averaging,
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Figure 4: Projected vs. Plain Eigenvalues (Daily)
Projected daily eigenvalues are obtained based on spectral decompositions where the daily eigenvectors
are replaced by monthly ones. Eigenvalues are based on blocked realized kernel estimates.
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5.1: Blocked Kernel
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5.2: Plain Kernel
Figure 5: Explained Variation of Eigenvalues (Daily)
Explained variation is defined as the ratio of the given eigenvalue to the sum of all eigenvalues. Eigenval-
ues are based on blocked realized kernel estimates.
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6.1: Q′
tRtQt

2006 2007 2008 2009 2010
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Date

P
er

ce
nt

ag
e 

E
xp

la
in

ed

First Second Third Fourth

6.2: Q′
t−20,tRtQt−20,t

Figure 6: Explained Variation Plain vs. Projected Eigenvalues (Daily)
Eigenvalues are based on blocked realized kernel estimates.
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7.1: Blocked Kernel
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7.2: Plain Kernel
Figure 7: Autocorrelation Function of Log Eigenvalues (Daily)
Dashed lines indicate robust standard errors.

over time is effective in stabilizing eigenvectors. This property explains why an “anchoring”

of eigenvalues to a stable basis helps identifying underlying market factors and separating

signals from noise (see Figure 4). Moreover, the high variability of correlation eigenvalues and

eigenvectors explains why correlations are more difficult to estimate on daily frequencies and

require correlation targeting as in the DCC model (Engle, 2002) or taking into account long-run

components (e.g., Colacito et al., 2009). The short-term instability of eigenvectors might also

be a driving force of unstable estimates of betas on daily frequencies (Andersen et al., 2006). In

the following subsection, we show that this instability in daily eigenvalues and eigenvectors can

be indeed induced by estimation errors and inefficiency of underlying estimators.

3.2 The Impact of Estimation Error: A Simple Simulation Study

In a basic simulation setting, we examine to which extent the dynamics of the correlation

spectrum may be induced by noise. Our aim is to analyze how much variability in eigenvalues

and eigenvectors can be induced by estimation error if the true underlying covariance matrix is

constant. In particular, we study the distribution of eigenvalue and eigenvector changes under

the null hypothesis of a constant covariance matrix. This study can be considered as a stylized

extension of the analysis of eigenvalue distributions assuming independent assets in Laloux

et al. (1999). The examination of (limited) changes in the orientation of the eigenvector basis is

motivated by the results on covariances of locally stationary processes in Donoho et al. (2003).

Furthermore, a related simulation setting can be found in Daniels and Kass (2001).

We assume a basic diffusion for the observed log-price process X(s):

X(s) = Ψ B(s) , (11)

13



where Ψ′ is the Cholesky factorization of the covariance matrix Σ, while B(s) denotes a

(p× 1) vector of independent standard Brownian motions. The process is simulated 1, 000

times employing a Euler discretization approach with a step size of δ = 1/23400 for p = 10

assets and nd = 1, 000 days. We consider two specifications of the covariance matrix Σ that

mimic the empirics of the S&P 500 universe. The first specification assumes an equi-correlation

matrix based on the average pair-wise sample correlation. The second specification considers a

symmetric Toeplitz correlation structure with the first row given by the empirical correlation

deciles.2 In both scenarios, volatilities are set to the empirical standard deviation deciles.

As we are interested in the effects exclusively driven by estimation inefficiency, it is sufficient

to consider a framework without market microstructure noise and asynchronicity effects. Hence,

in such a noise-free framework, the daily covariance, Σ, is simply estimated using the standard

realized covariance estimator,

RCovt,Δ :=
m∑
j=1

rt,jΔ r′t,jΔ t = 1, . . . , nd, (12)

where rt,jΔ, j = 1, . . . ,m, is the realized Δ-second log-return and m = T s/Δ with T s =

23, 400. Realized covariances are computed sampling either every 15 seconds or 30 minutes,

i.e., Δ ∈ {15, 1800}. For each day t, we obtain the spectral components of the estimated

correlation matrix as in (8) and (9). We then compute the angles between the eigenvectors from

t− 1 to t according to (10) and the (unsigned) relative change of eigenvalues as

∣∣ΔΛ
(j)
t

∣∣ := ∣∣Λ(j)
t − Λ

(j)
t−1

∣∣/Λ(j)
t−1, (13)

where Λ
(j)
t denotes the j-th largest eigenvalue for day t. Figures 12 to 15 in Appendix C depict

the simulated distributions of (average) eigenvector angles and relative eigenvalue changes. It

is shown that estimates based on a 15 second sampling frequency are very close to the true

(zero) values indicating constancy of eigenvalues and eigenvectors over time. Conversely, in

case of 30 minute realized covariances, both eigenvalues and eigenvectors exhibit considerable

day-to-day variation. For instance, in case of the equicorrelation structure, the distributions of

average eigenvector angles and relative eigenvalues changes are centered around roughly 19

degrees and 23%, respectively. These results demonstrate that daily fluctuations of correlation

eigenvalues and eigenvectors may be due to estimation errors and thus reflect noise rather than

’true’ dynamics.

2A Toeplitz matrix is a (n× n) matrix T = (ti,j), i, j = 1, . . . , n, where ti,j = ti−1,j−1 for i, j = 2, . . . , n.
Accordingly, the elements of T are constant along descending diagonals.
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In our empirical setting (in the presence of noise and asynchronous trading), the sampling

frequency is limited by the RTS scheme. Therefore, estimation efficiency can only be increased

by an averaging (’smoothing’) of estimates over time. However, as the (true) correlation matrix

is not necessarily constant over time, such a smoothing strategy obviously induces a loss of

information as we aggregate over true correlation fluctuations. This generates a natural trade-off

between efficiency gains on the one hand and a loss of information on the other hand. Though

the empirical results in the previous section indicate that a smoothing of correlation movements

induce substantial stabilizations of underlying eigenvectors and eigenvalues, it is still unclear

whether this strategy ultimately leads to better forecasts. This question motivates the multi-

scale spectral components (MSSC) model introduced in Section 4 which allows to combine

differently aggregated covariance components and builds a workhorse for analyzing the impact

of smoothing and a potential mixing of time scales in a forecasting setting.

3.3 Conditioning and Dimension Reduction

Though the blocked kernel estimator provides positive definite estimates of individual covariance

blocks, the resulting covariance matrix is not necessarily positive definite. However, in financial

applications, such as, e.g., in portfolio management, it is crucial that covariance forecasts are

positive definite and well-conditioned, i.e., allowing numerically stable inversions. Particularly

in (global) minimum variance strategies, estimates of the inverse of the covariance matrix are of

great importance.

Well-conditioning can be achieved by regularization techniques such as shrinkage (Ledoit

and Wolf, 2003) or eigenvalue cleaning. Hautsch et al. (2010) use the eigenvalue cleaning

procedure proposed by Laloux et al. (1999) to identify noisy eigenvalues employing concepts

from random matrix theory. See Appendix A for details. Although eigenvalue cleaning is a

valuable method to regularize zero or small eigenvalues, it does not reduce the dimensionality

of the model. The given out-of-sample forecasting exercise requires dimension reduction and

model parsimony in order to provide forecasting stability.

A factor structure where the covariance is driven by a minimum set of eigenvalues and

eigenvectors is both parsimonious and avoids in-sample over-fitting; a key concern when the

inverse covariance is the object of interest. We can write the spectral decomposition of Rt as

Rt = QtΛtQ
′
t =

k∑
i=1

λt,iqt,iq
′
t,i +

p∑
i=k+1

λt,iqt,iq
′
t,i. (14)
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Then, keeping only k < p factors, we obtain the factorized correlation matrix

Rt,(k) = Qt,(k)Λt,(k)Q
′
t,(k) +Dt, (15)

where Dt is a diagonal matrix associated with the idiosyncratic components and consisting

of the diagonal elements Dt,(i) = 1 − Q(i)
t with Q(i)

t corresponding to the i-th element of

Qt,(k)Λt,(k)Q
′
t,(k), i = 1, . . . , p. In line with the Arbitrage Pricing Theory by Ross (1976), the

k driving factors are economically interpreted as systematic or systemic risk factors. Further, as

shown by Fan et al. (2008a), a factor structure ensures fast convergence of the factor inverse if

the number of factors k is small relative to the number of assets p.

To select the number of factors, we employ the criterion by Bai and Ng (2002) giving the

optimal number of factors in a linear factor model based on p assets and T observations. In our

context, the underlying factor model is defined in refresh time and is given by

x
(i)
j = λ′

iFj + ε
(i)
j , (16)

where Fj is the k × 1 vector of common factors, λi denotes the corresponding vector of

factor loadings and ε
(i)
j are the idiosyncratic components of x

(i)
j . Let K denote the ex-

ogenously fixed maximal number of possible driving factors, P 2
pT = min (

√
p,
√
T ), and

σ̂2(k) = 1
p

∑p
i=1 σ̂

2,i(k) with σ̂2,i(k) being a consistent estimate of the factor model residual

variance E
[
ε
(i)2
j

]
. Bai and Ng (2002) propose finding k by employing the minima of the criteria

Cp1(k) = σ̂2(k) + kσ̂2(K)

(
p+ T

pT

)
ln

(
pT

p+ T

)
, (17)

Cp2(k) = σ̂2(k) + kσ̂2(K)

(
p+ T

pT

)
ln

(
P 2
pT

)
.

Figure 8 gives the number of selected factors based on daily rolling windows using the

realized kernel and its blocked version as estimators. Two major findings can be identified. First,

selecting factors based on monthly covariances in most cases results in three factors. Conversely,

daily realized covariances yield more factors and thus a more flexible factor structure. Second,

the efficiency gains induced by a blocking of realized kernels result in a smaller number of

factors. The histograms in Figure 8 display greater dispersion when the realized kernel is the

underlying estimator, which confirms that blocking allows for a better factor identification and

signal extraction. Finally, Figure 9 depicts the evolution of the number of selected factors over

time computed for monthly covariances using the blocked realized kernel. The increase in the

number of factors around the financial crisis in 2008 shows that a richer framework is needed to

capture the dependence structure during this more volatile period.
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8.1: Blocked
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8.2: Kernel
Figure 8: Sample Distribution of Factor Number
Number of factors is determined using the criterion by Bai and Ng (2002) according to (17).
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Figure 9: Evolution of the Factor Structure Based on Monthly Blocked Kernel Estimates
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4 Forecasting High-Dimensional Covariances

4.1 The Multi-Scale Spectral Components Framework

We introduce the Multi-Scale Spectral Components (MSSC) model as a flexible framework for

providing forecasts based on time series of high-dimensional daily covariance matrices. The

approach is motivated by the idea of (i) separately modeling variances, correlation eigenvalues

and correlation eigenvectors, (ii) conditioning the correlation matrix by imposing a factor

structure, (iii) projecting eigenvalues on the underlying eigenvector basis, and (iv) allowing the

individual covariance components to be averaged over different frequencies.

Denote Σt,(r) as the k-factor regularized covariance matrix for t. Then, Σt,(k) is modeled as

Σt,(k) = Vt−sv ,tRt,(k)Vt−sv ,t, (18)

Rt,(k) = Qt−sq ,t,(k)Λ
(sq)
t−sλ,t,(k)

Q′
t−sq ,t,(k)

+Dt,

where sv, sq and sλ denote the time horizons over which V , Q and Λ are estimated. Λ(sq)
t−sλ,t,(k)

is computed as the long-term basis projected eigenvalue matrix

Λ
(sq)
t−sλ,t,(k)

:= Q′
t−sq ,t,(k)

Rt−sλ,t,(k)Qt−sq ,t,(k), (19)

where Λt−sq ,t,(k) and Qt−sq ,t,(k) are computed based on the long-term correlation, Rt−sq ,t,(k) :=

V −1
t−sq ,tΣt−sq ,t,(k)V

−1
t−sq ,t.

Our approach is motivated by the assumption of adaptive local stationarity as in Mallat

et al. (1998), Donoho et al. (2003), and Clemencon and Slim (2004). The class of locally

stationary processes have an attractive feature of an autocovariance structure which varies

slowly over time. This is also in line with the correlation modeling assumptions made in Engle

(2002). Specifically we assume that the eigenspace can be well represented on the basis of

a fixed-window-length segmentation procedure. Moreover, as discussed below, holding the

eigenspace constant simplifies correlation forecasting as fewer elements are locally dynamic.

It is well-known that volatility processes are persistent and reveal short-run and long-run

dynamics. The latter can be captured using fractionally integrated processes (e.g., Andersen

et al., 2003) or by appropriately mixing different frequencies using, e.g., mixed data sampling

(MIDAS) techniques as proposed by Ghysels et al. (2006) or HAR processes introduced by

Corsi (2009). We follow the latter strategy and model daily volatilities, i.e., sv = 1, using a

Heterogeneous Autoregressive (HAR) process mixing daily, weekly and monthly frequencies.

18



The HAR(1,5,20) model is given by

σj
t = φ0 + φ1σ

j
t−1 + (φ5/5)σ

j
t−6,t−1 + (φ20/20)σ

j
t−21,t−1 + εεt , (20)

where εht is a white noise error term and σ2,j
t is estimated using a univariate realized kernel

(Barndorff-Nielsen et al., 2008). Using univariate kernels instead of using the diagonal elements

of multivariate kernels ensures that the volatilities are estimated with highest precision.

As shown in the previous section, eigenvalues reveal persistent dynamics similar to that of

volatilities. As in Stock and Watson (2002), we follow a two-step procedure where the factors

are first estimated and then forecasted to provide predictions of the realized covariances. In

particular, in case of using daily eigenvalues, i.e., sλ = 1, we suggest modeling log eigenvalues

using a multivariate HAR(1,5,20) specification,

Λ
(sq)
t = Φ0 +Φ1Λ

(sq)
t−1 +Φ5Λ

(sq)
t−6,t−1 +Φ20Λ

(sq)
t−21,t−1 + ελt , (21)

where ελt is a k × 1 multivariate white noise process with diagonal covariance matrix and Φl,

l ∈ {0, 1, 5, 20} are k × k parameter matrices. The multivariate HAR (MHAR) model is a

straightforward multivariate extension of a univariate HAR model and, e.g., also used by Bauer

and Vorkink (2011). Following the cascade structure of the HAR framework discussed by Corsi

(2009), we model weekly (sλ = 5) and monthly (sλ = 20) log eigenvalues based on a “weekly”

MHAR (WMHAR) and a vector autoregressive (VAR) model, respectively. Hence,

Λ
(sq)
t−5,t = Φ0 +Φ1Λ

(sq)
t−6,t−1 +Φ4Λ

(sq)
t−21,t−1 + ελt−5,t (22)

and

Λ
(sq)
t−20,t = Φ0 +

p∑
i=1

ΦpΛt−20−i,t−i + ελt−20,t. (23)

Modeling log eigenvalues instead of plain eigenvalues guarantees non-negativity of forecasts

and reduces the impact of extreme magnitudes. This is particularly advantageous in a rolling-

window out-of-sample forecasting study where the model is re-estimated on a daily basis and

analytical and computational stability is crucial. However, it requires a re-transformation of

forecasts, which we perform by a simple “de-logging”, i.e., Et[Λ
(sq)
t+h] ≈ exp{Et[ln Λ

(sq)
t+h]}. We

refrain from using a bias-correction as this would impose additional estimation error due to the

estimation of the (conditional) variance of ln Λ(sq)
t+h.
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4.2 Benchmark Estimators

In order to comprehensively assess the (relative) out-of-sample forecasting performance of the

MSSC approach and to gain deeper insights into the prediction power of alternative approaches,

we consider several alternative models that are of practical relevance and constitute meaningful

benchmarks:

(i) the dynamic equi-correlation (DECO) model by Engle and Kelly (2007),

(ii) a rolling-window three-factor model based on principal components,

(iii) the Ledoit and Wolf (2004a) shrinkage estimator,

(iv) the RiskMetrics2006 estimator.

The DECO model is a special case of the dynamic conditional correlation (DCC) model by

Engle (2002). Denote rt as the p × 1 vector of daily returns which is assumed to have a

conditional multivariate normal distribution with mean zero and covariance matrix Σt, i.e.,

rt|Ft−1 ∼ N (0,Σt). Then, the DECO model is given by Σt = VtRtVt, where Vt := diag
[
σj
t

]
with the conditional variances σj 2

t following GARCH processes and the correlations set to ρt,

i.e.,

σj 2
t := ωj + αj r

j 2
t−1 + βj σ

j 2
t−1, j = 1, . . . , p, (24)

Rt := (1− ρt) Ip + ρt ιpι
′
p,

ρt :=
2

p (p− 1)

∑
i>j

zi,j,t
zi,i,tzj,j,t

, (25)

Zt := Z̄ (1− αz − βz) + αz Z̃
1/2
t−1 rt−1 r

′
t−1 Z̃

1/2
t−1 + βz Zt−1,

with ωj , αj and βj , j = 1, . . . , p, being the parameters of the j−th GARCH(1,1) process,

while Ip and ιp denote an identity matrix and vector, respectively. Furthermore, zi,j,t is the

(i, j)-element of Zt, while αz and βz denote the parameters of the correlation process. Z̄ is a

positive definite matrix and Z̃t replaces the off-diagonal elements of Zt with zeros but retains

its main diagonal. We estimate the DECO model using the composite likelihood approach

discussed in Engle and Kelly (2007).

Factor models are advantageous when estimating large covariance matrices, as the number

of parameters is reduced and covariance estimates are positive definite by construction. We

employ a three-factor model with the factors ft,(j), j = 1, 2, 3, chosen to be the three first
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principal components. Hence,

rt =

3∑
j=1

βt,(j)ft,(j) + εt, (26)

where rt denotes the vector of daily returns, βt,(j) is the p × 1 vector of loadings on the jth

factor and εt is the vector of white noise errors with variances σ̃2
t . Then, the covariance is given

by

Σt =
3∑

k=1

βt,(j)β
′
t,(j)V[ft,(j)] +D∗

t =
3∑

j=1

βt,(j)β
′
t,(j)Λt,(j) +D∗

t , (27)

where D∗
t = diag[σ̃2

t ] is the diagonal matrix of idiosyncratic variances.

Shrinkage estimators, initially proposed by Stein (1956), aim to reduce the sampling error in

covariance estimation by shrinking the sample covariance matrix towards a restricted, positive

definite target. The estimator can be written as a linear combination, such that

Σt = δFt + (1− δ)St; δ ∈ [0, 1] , (28)

where δ denotes the shrinkage intensity, St is the sample covariance matrix of daily returns

and Ft is the shrinkage target. Ledoit and Wolf (2003) and Ledoit and Wolf (2004b) derive

the optimal shrinkage intensity in the sense of minimizing the squared error loss. We follow

their approach using the equicorrelation matrix as shrinkage target. The latter was suggested

by Ledoit and Wolf (2004a) and implies that all (pairwise) correlations are set to the average

sample correlation.

The widely used and easy to implement RiskMetrics estimator is based on the EWMA of

the outer product of daily returns (RiskMetrics, 1996). We employ the new RiskMetrics2006

approach which assumes a hyperbolic decay of the weights on lagged outer products of returns.

This estimator can be written as the weighted average of kmax EWMA covariance estimates
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with weights of the latter decaying logarithmically, i.e.,

Σt+1 =

kmax∑
k=1

wk Σ
k
t+1, (29)

Σk
t+1 =

imax∑
i=0

λk
i rt−ir

′
t−i,

λk
i :=

(1− μk)(
1− μimax

k

) μi
k, wk :=

1

C

(
1− ln(τk)

ln(τ0)

)
,

μk := exp(−1/τk), τk := τ1 ρ
k−1,

where rt denotes the vector of daily returns and the constant C is specified such that
∑

k wk =

1. τ0 is a logarithmic decay factor, while τ1 and τkmax denote the lower and upper cut-off,

respectively. The additional parameter ρ is included for technical reasons. In our application, we

use the parameter values suggested in Zumbach (2006), i.e., τ0 = 1560, τ1 = 4, τkmax = 512 and

ρ =
√
2. Since RiskMetrics covariance forecasts become ill-conditioned in high-dimensional

settings, we employ the regularization method suggested in Zumbach (2009b), which relies on a

two-stage shrinkage of the covariance matrix. See Zumbach (2009b) for details.

Motivated by the results in Andreou and Ghysels (2002), de Pooter et al. (2008) apply

EWMA schemes as above to realized covariance estimates. We follow this idea considering

a modified RiskMetrics2006 estimator, in which the outer product of returns is replaced by

blocked realized kernel estimates. Hence, the k-th EWMA in equation (29) changes to

Σk
t+1 =

imax∑
i=0

λk
i Σ̂

BRK
t−i , k = 1, . . . , kmax, (30)

where Σ̂BRK
t−i denotes the blocked realized kernel estimate for day t, while λk

i is defined as in

(29). We regularize the resulting covariance forecasts by eigenvalue cleaning, which is discussed

in Appendix A.

5 Out-of-Sample Forecasting

We estimate all MSSC parameters on a daily basis using rolling windows of 200 days. The

same window length is employed for the benchmark approaches in Section 4.2. In order to

gain insights into the models’ performances in ’normal’ and ’non-normal’ market periods, we

conduct a separate analysis for a period before the financial crisis (’pre-crisis period’), covering

the time from 01/2006 until 06/2008, and the period from 07/2008 to 12/2009 including the

financial crisis (’crisis period’). We consider two forecast evaluation criteria. The first evaluates
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the performance in terms of forecasting realized portfolio volatility. This approach collapses

a high dimensional problem into a simple to evaluate statistic. The second criteria considers

optimal portfolio allocations in terms of global minimum variance and the characteristics of the

portfolio weights.

5.1 Forecasting Setup and MSSC Specifications

We produce rolling window out-of-sample forecasts for daily, weekly and monthly horizons,

i.e., h = 1, 5, 20 days. Using the blocked realized kernel with G = 5 liquidity groups,

the series of daily covariances is constructed, from which we compute weekly and monthly

(overlapping) averages. Then, spectral components are obtained based on the corresponding

realized correlation matrices. The eigenvector basis is kept constant over the forecasting horizon

and is computed based on the last sq trading days.3 Finally, covariance forecasts are regularized

by imposing a factor structure with the number of factors k to be chosen on a daily basis

according to the criteria (17). The factor residual variances are estimated based on monthly

covariances to ensure a stable and parsimonious factor structure.

Table 1 reports the chosen MSSC settings. The selected specifications are motivated by

the following underlying research questions we aim to answer: (i) Does averaging over time

and a mixing of time scales improve the forecasting performance? (ii) How well do naive fore-

casts (assuming a random walk process) perform compared to model-implied forecasts where

volatilities and eigenvalues are predicted based on HAR estimates? Accordingly, specifications

(1c) and (2c) choose volatilities, correlation eigenvalues and eigenvectors as realizations of the

previous day and week, respectively. In model (2c∗), weekly spectral components are mixed

with daily volatilities. In specifications (1cp), (2cp) and (3cp), monthly eigenvectors are combined

with daily, weekly and monthly eigenvalues as well as volatilities. Conversely, (2c∗p ) and (3c∗p )

are based on daily volatilities only. The remaining specifications impose a HAR(1,5,20) process

for daily volatilities. (1), (2), (1p), (2p) and (3p) let eigenvalues and eigenvectors to originate

from the previous day, week and month, respectively. While in the above models, no eigenvalue

dynamics are used, (1d), (2d) and (3d) predict daily, weekly, and monthly eigenvalues using a

MHAR(1,5,20), WMHAR and VAR(1) model, respectively. In all three cases, eigenvectors are

fixed and taken from the last 20 days. In case of the DECO model, we only analyze forecasts

during the pre-crisis period, since this model is numerically unstable during the crisis.4

3Allowing for slowly moving eigenvector dynamics, e.g., based on EWMA dynamics, would increase the numerical
complexity considerably, as eigenvalues would need to be projected on predicted eigenvectors. As demonstrated
in Section 3, eigenvectors display high autocorrelation with little change over weekly or monthly horizons. We
consider locally constant windows as a simple and numerically stable solution.

4DECO predictions are computed based on moving-window predictions of the individual GARCH processes with
the correlation parameters being fixed to their estimates from the pre-crisis period.
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Table 1: MSSC Specifications
V̂ and Λ̂ indicate whether a dynamic model or, alternatively, the value from the previous period is used
to forecast volatilities and (log-) eigenvalues, respectively.

MSSC sv V̂ sλ Λ̂ sq

(1c) 1 day previous 1 day previous 1 day
(2c) 5 days previous 5 days previous 5 days

(2c∗) 1 day previous 5 days previous 5 days

(1cp) 1 day previous 1 day previous 20 days
(2cp) 5 days previous 5 days previous 20 days
(3cp) 20 days previous 20 days previous 20 days

(2c∗p ) 1 day previous 5 days previous 20 days
(3c∗p ) 1 day previous 20 days previous 20 days

(1) 1 day HAR(1,5,20) 1 day previous 1 day
(2) 1 day HAR(1,5,20) 5 days previous 5 days

(1p) 1 day HAR(1,5,20) 1 day previous 20 days
(2p) 1 day HAR(1,5,20) 5 days previous 20 days
(3p) 1 day HAR(1,5,20) 20 days previous 20 days

(1d) 1 day HAR(1,5,20) 1 day MHAR(1,5,20) 20 days
(2d) 1 day HAR(1,5,20) 5 days WMHAR 20 days
(3d) 1 day HAR(1,5,20) 20 days VAR(1) 20 days

5.2 Forecasting Realized Portfolio Volatilities

The first forecasting evaluation criterion considers the models’ ability to predict realized portfolio

variances as introduced by Bollerslev et al. (2008). In particular, we simulate 1, 000 vectors of

portfolio weights wi, i = 1, . . . , p, by drawing from a U(−1, 1) distribution with
∑p

i=1wi = 1.

Then, the 5-minute realized portfolio variance is given by

RCovPt :=

⎛⎝ 75∑
j=1

rPt,j5

⎞⎠2

, (31)

with rPt,j5 :=
∑p

i=1wir
i
t,j5, j = 1, . . . , 75, denoting realized 5-min portfolio returns. Em-

ploying the Mincer and Zarnowitz (1969) framework, we evaluate the forecasts using the

regression

ln
(
RCovPt

)
= α+ β1 ln

(
w′Σ̂1,tw

)
+ β2 ln

(
w′Σ̂2,tw

)
+ εt, (32)
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where Σ̂j,t, j = 1, 2, denote competing covariance forecasts. The parameter α measures the bias

of the forecast, while β1 and β2 capture the forecast efficiency. The logarithmic transformations

are applied to reduce the impact of outliers on the R2 (see Pagan and Schwert, 1990).

Table 2 shows Mincer-Zarnowitz forecasting regression results for the different MSSC speci-

fications. Three major results are apparent. First, the intercept α is predominantly significant for

naive forecasts suggesting that these predictors tend to be biased. Conversely, predictions based

on HAR dynamics are unbiased. However, while this holds for daily and weekly predictions,

nearly all MSSC forecasts imply significant intercepts at a monthly horizon. Second, the R2,

measuring the correlation between volatility forecasts and realizations, is highest for the naive

forecasts with the best performance exhibited by specification (3c∗p ). The latter combines (fixed)

monthly eigenvalues and eigenvectors with daily volatilities indicating the usefulness of using

long-term correlations and a mixing of time scales. Interestingly, weekly forecasts exhibit

R2’s which are even higher than those for daily forecasts indicating that the former seem to be

less noisy and easier to predict. In the long run, however, forecasting uncertainty dominates

yielding a significant reduction of the R2 on a monthly basis. Third, the regression slope

coefficient β, capturing the predictors’ efficiency is increased and converges to one whenever

spectral components based on long-term correlations are used and, in addition, (M)HAR-based

predictions for volatilities and eigenvalues are employed. Again, this result does not apply over

monthly forecasting horizons. In these cases, both the slope estimates and the R2 considerably

drop when switching from naive forecasts to dynamic ones. This finding indicates that over

longer horizons, modeling uncertainty dominates implying higher prediction errors than in cases

where just (constant) naive forecasts are used. This result is driven by the strong persistence in

volatilities and eigenvalues.

Table 3 presents the results of the corresponding forecasting regressions for the benchmark

models versus specification (3c∗p ) which tends to perform best among all MSSC settings. For

every forecast horizon, all benchmarks are clearly outperformed by the MSSC approach. The

three-factor model and the shrinkage estimator exhibit the lowest prediction accuracy and

efficiency. The weak performance of the latter approaches particularly during the volatile crisis

period is explained by the slow responsiveness to shocks. Conversely, the strongest benchmarks

during the pre-crisis and crisis periods are both high-frequency and low-frequency RiskMetrics

estimators. However, in encompassing forecasting regressions including both the RiskMetrics

and MSSC predictions, the RiskMetrics approach is outperformed by the MSSC model. This is

indicated by the estimate of β1 being insignificant. Hence, RiskMetrics forecasts do not carry

any additional information compared to MSSC predictions. This provides completing evidence

that there is improved portfolio variance forecasting using high frequency data.
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Table 2: Mincer-Zarnowitz Regressions for MSSC Specifications
Results of Mincer-Zarnowitz forecasting regressions of realized portfolio variances RCovP,t on MSSC
forecasts. t-statistics based on Newey-West standard errors in parentheses. Computed for the pre-crisis
period, 01/2006 to 06/2008, and the period including the crisis, 07/2008 to 12/2009.

h = 1 h = 5 h = 20

MSSC α β1 R2 α β1 R2 α β1 R2

Λ1Q1 V1 −1.814
(−5.353)

0.837
(24.145)

0.583 −5.387
(0.583)

0.698
(12.144)

0.543 −4.582
(−6.293)

0.525
(6.767)

0.400

Pre-C
risis

Λ5 Q5 V5 −1.246
(−2.41)

0.902
(17.068)

0.530 −2.809
(0.530)

0.800
(10.417)

0.557 −3.674
(−4.031)

0.623
(6.469)

0.440

Λ5 Q5 V1 −1.004
(−2.524)

0.923
(22.439)

0.595 −3.425
(0.595)

0.791
(12.183)

0.585 −3.818
(−4.557)

0.605
(6.805)

0.447

Λ1 Q20 V1 −1.691
(−4.884)

0.851
(23.903)

0.580 −5.113
(0.580)

0.711
(12.154)

0.543 −4.508
(−6.005)

0.534
(6.649)

0.398

Λ5 Q20 V5 −1.216
(−2.340)

0.906
(17.045)

0.529 −2.76
(0.529)

0.804
(10.457)

0.557 −3.657
(−4.000)

0.625
(6.465)

0.439

Λ20 Q20 V20 −1.530
(−1.686)

0.878
(9.572)

0.414 −2.014
(0.414)

0.804
(7.577)

0.465 −3.645
(−3.279)

0.629
(5.472)

0.371

Λ5 Q20 V1 −0.984
(−2.458)

0.925
(22.335)

0.594 −3.379
(0.594)

0.794
(12.198)

0.585 −3.807
(−4.528)

0.607
(6.790)

0.445

Λ20 Q20 V1 −0.505
(−1.068)

0.976
(19.714)

0.593 −2.242
(0.593)

0.844
(11.134)

0.594 −3.415
(−3.645)

0.648
(6.571)

0.456

Λ1 Q1 −0.651
(−1.663)

0.957
(23.864)

0.587 −2.255
(0.587)

0.848
(11.891)

0.550 −5.420
(−3.048)

0.442
(2.549)

0.241

Λ5 Q5 −0.143
(−0.300)

1.012
(20.512)

0.571 −1.149
(0.571)

0.915
(10.904)

0.562 −5.172
(−2.582)

0.469
(2.398)

0.246

Λ1 Q20 −0.543
(−1.349)

0.968
(23.397)

0.584 −2.070
(0.584)

0.859
(11.835)

0.550 −5.425
(−3.019)

0.442
(2.513)

0.236

Λ5 Q20 −0.145
(−0.304)

1.012
(20.533)

0.570 −1.163
(0.570)

0.914
(10.923)

0.561 −5.195
(−2.614)

0.467
(2.405)

0.244

Λ20 Q20 0.276
(0.439)

1.057
(16.189)

0.559 −0.550
(0.559)

0.957
(9.425)

0.555 −5.238
(−2.555)

0.463
(2.301)

0.228

Λ1MHAR Q20 0.276
(0.577)

1.049
(21.367)

0.585 −0.456
(0.585)

0.962
(10.702)

0.562 −5.148
(−2.423)

0.467
(2.260)

0.229

Λ5WMHAR Q20 −0.056
(−0.117)

1.020
(20.543)

0.571 −0.885
(0.571)

0.934
(10.938)

0.563 −5.114
(−2.428)

0.473
(2.305)

0.238

Λ20VAR Q20 0.276
(0.439)

1.057
(16.188)

0.559 −0.548
(0.559)

0.957
(9.413)

0.556 −5.221
(−2.543)

0.465
(2.306)

0.230

Λ1Q1 V1 −0.976
(−4.305)

0.910
(34.798)

0.699 −1.260
(−3.434)

0.864
(20.477)

0.735 −1.956
(−3.364)

0.778
(11.234)

0.606

C
risis

Λ5 Q5 V5 −0.658
(−1.86)

0.956
(23.137)

0.693 −0.881
(−1.992)

0.917
(17.596)

0.744 −1.380
(−2.067)

0.853
(10.589)

0.656

Λ5 Q5 V1 −0.602
(−2.221)

0.957
(30.37)

0.720 −0.864
(−2.383)

0.913
(21.648)

0.765 −1.548
(−2.554)

0.828
(11.348)

0.640

Λ1 Q20 V1 −0.946
(−3.775)

0.914
(31.386)

0.694 −1.230
(−3.288)

0.868
(20.046)

0.731 −1.940
(−3.233)

0.780
(10.854)

0.600

Λ5 Q20 V5 −0.653
(−1.805)

0.957
(22.537)

0.689 −0.880
(−1.934)

0.917
(16.972)

0.738 −1.385
(−2.015)

0.853
(10.235)

0.650

Λ20 Q20 V20 −0.699
(−0.963)

0.960
(11.232)

0.600 −0.769
(−0.965)

0.939
(9.927)

0.670 −1.261
(−1.416)

0.876
(7.963)

0.593

Λ5 Q20 V1 −0.581
(−2.261)

0.960
(32.179)

0.716 −0.848
(−2.287)

0.915
(21.064)

0.761 −1.540
(−2.478)

0.829
(11.045)

0.635

Λ20 Q20 V1 −0.302
(−1.172)

0.995
(33.101)

0.723 −0.546
(−1.370)

0.953
(20.263)

0.775 −1.297
(−1.841)

0.860
(10.016)

0.642

Λ1 Q1 −0.432
(−1.592)

0.983
(31.145)

0.717 −0.79
(−1.865)

0.930
(18.613)

0.733 −6.325
(−5.532)

0.268
(1.887)

0.237

Λ5 Q5 −0.308
(−0.984)

0.999
(27.046)

0.713 −0.681
(−1.499)

0.945
(17.395)

0.733 −6.326
(−5.491)

0.269
(1.872)

0.236

Λ1 Q20 −0.398
(−1.423)

0.986
(30.111)

0.712 −0.754
(−1.702)

0.934
(17.739)

0.729 −6.333
(−5.542)

0.267
(1.881)

0.234

Λ5 Q20 −0.283
(−0.890)

1.002
(26.596)

0.711 −0.661
(−1.402)

0.948
(16.745)

0.729 −6.331
(−5.493)

0.268
(1.867)

0.234

Λ20 Q20 −0.019
(−0.053)

1.036
(24.703)

0.714 −0.391
(−0.737)

0.982
(15.406)

0.738 −6.348
(−5.480)

0.266
(1.841)

0.228

Λ1MHAR Q20 −0.098
(−0.317)

1.022
(28.013)

0.715 −0.391
(−0.763)

0.978
(16.001)

0.726 −6.397
(−5.633)

0.259
(1.834)

0.214

Λ5WMHAR Q20 −0.253
(−0.792)

1.006
(26.579)

0.710 −0.594
(−1.235)

0.956
(16.532)

0.724 −6.393
(−5.646)

0.260
(1.844)

0.217

Λ20VAR Q20 −0.032
(−0.092)

1.035
(24.715)

0.714 −0.430
(−0.817)

0.978
(15.445)

0.738 −6.338
(−5.471)

0.268
(1.849)

0.232
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5.3 Forecasting Optimal Portfolio Allocations

The Mincer-Zarnowitz forecasting regressions shown in the previous section provide a com-

prehensive assessment of the individual approaches’ ability to predict a (realized) portfolio

variance. This can be seen as a more statistical way of forecasting evaluation as it makes the

forecasting target (quasi-)observable. However, in practice, the quality of covariance forecasts

is ultimately assessed by their performance in particular applications. Therefore, as a second –

and more economically motivated – criterion, we evaluate the individual approaches by their

ability to predict optimal portfolio allocations. In particular, we examine the out-of-sample

performance of global minimum variance (GMV) portfolios constructed using the competing

forecasts of the covariance matrix. Focusing on minimum variance portfolios has the advantage

of avoiding the need to predict returns and to focus on covariance forecasts solely. Indeed, noisy

return predictions can substantially affect the results of a more general mean-variance analysis,

see, e.g., Jagannathan and Ma (2003).

Hence, we solve the following optimization problem:

minwt,t+h
w

′
t,t+hΣt,t+hwt,t+h

s.t. w
′
t,t+h ιp = 1,

(33)

where Σt,t+h is the p× p covariance matrix from day t to t+ h. The GMV weights are then

given by

wGMV
t,t+h =

Σ−1
t,t+h ιp

ι′pΣ
−1
t,t+h ιp

. (34)

Patton and Sheppard (2008) show that the GMV portfolio constructed using the true covariance

matrix Σt,t+h has a lower volatility than the corresponding portfolio constructed from any

other forecast. Correspondingly, the forecasting performance of the alternative approaches is

straightforwardly assessed by their ability to produce portfolios with minimal variances. We

measure the ex post portfolio volatility as the square root of the annualized average realized

variance,

σ̄a
P :=

√
250

(
1

nh

n−h∑
t=1

ŵGMV′
t,t+h RCovt,t+h ŵ

GMV
t,t+h

)1/2

, (35)

where RCovt,t+h is the 5-minute realized covariance from day t to t+ h, while ŵGMV
t,t+h denotes

the GMV weights as in (34) based on the covariance forecast Σ̂t,t+h using information up to t.

To gain insights not only in overall forecasting qualities but also into the practical usefulness

of the competing forecasting approaches, we evaluate additional portfolio characteristics based

on the predicted weights ŵGMV
t,t+h. Following de Pooter et al. (2008), we consider portfolio

turnover rates that proxy transaction costs proportional to each traded dollar for every stock.
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For a forecasting horizon h, the portfolio weights are adjusted to ŵGMV
t,t+h at the end of day t. The

total return of the portfolio on day t is rPt−h,t :=
∑

i ŵ
GMV,i
t−h,t rit−h,t, where ŵGMV,i

t−h,t and rit−h,t

are the weight and return of stock i, respectively. Just before rebalancing, the actual weight of

stock i in the portfolio has changed to ŵGMV,i
t−h,t

1+rit−h,t

1+rPt−h,t

. Thus the portfolio turnover on day t is

given by

pot :=
∑
i

∣∣∣∣∣ŵGMV,i
t,t+h − ŵGMV,i

t−h,t

1 + rit−h,t

1 + rPt−h,t

∣∣∣∣∣ . (36)

Second, we compute the concentration of GMV portfolio weights. As noted, e.g., in Oomen

(2009), extreme positions can be implied by estimation errors and may cause practical pitfalls

such as disproportionate transaction costs or an excessive market impact. We measure the

concentration as the norm of the vector of portfolio weights on day t,

pct :=
∥∥ŵGMV

t,t+h

∥∥
2
=

(∑
i

ŵGMV,i 2
t,t+h

)1/2

. (37)

The concentration measure is minimized for an equally-weighted portfolio, i.e., wGMV
t,t+h =

(1/p) ιp.

Finally, motivated by the analysis in Liu (2009), we examine the size of short positions in

the portfolio. Verifying to which extent short sale constraints would be violated is of practical

relevance, since many portfolio managers are prohibited from taking such positions. Hence, we

compute the sum of negative portfolio weights on day t as

spt :=
∑
i

ŵGMV,i
t,t+h 1I

{
ŵGMV,i
t,t+h < 0

}
. (38)

We predict the GMV weights wGMV
t,t+h for h = 1, 5, 20 days. To assess the statistical sig-

nificance of performance differences between the competing forecasts, we use a re-sampling

procedure by drawing 1, 000 random samples of p = 350 assets out of the 400 asset uni-

verse. We then compute covariance forecasts and conduct the GMV analysis for each subset.

The re-sampling step provides information on the variability of resulting (realized) portfolio

volatilities.

Table 4 presents the medians as well as standard deviations across all random samples of

the resulting realized (GMV) portfolio volatility (35) based on MSSC forecasts. Moreover,

we report the sample averages of the portfolio characteristics (36), (37) and (38). The major

observation is that “naive” (static) specifications outperform predictions based on HAR dy-

namics, which confirms the evidence from the Mincer-Zarnowitz regressions. For instance,
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the median portfolio volatility implied by the dynamic specification (1d), using a HAR model

for both daily volatilities and eigenvalues, exceeds that of specification (2c∗), employing con-

stant weekly spectral components and daily volatilities, by more than six standard deviations.

Furthermore, the results underline the advantages of using long-term stable correlations, since

MSSC specifications employing both daily eigenvalues and eigenvectors imply higher portfolio

volatilities. Even if only (static) eigenvalues originate from a daily time scale, the resulting

standard deviation of portfolio volatility across the random samples is considerable. However,

there is no clear evidence in favor of a mixing of time scales, as, e.g., the relative performance of

specifications (2c∗) and (2c) – the latter using weekly instead of daily volatilities – is ambiguous.

The empirical features of the resulting GMV portfolios are quite homogeneous across the MSSC

specifications (with the turnover based on daily forecasts being an exception). Portfolio turnover

is distinctly higher for specifications employing constant daily volatilities, especially, when

combined with (static) daily eigenvalues and eigenvectors. Hence, smoothing over time leads to

more stable portfolio positions requiring less re-balancing and thus implying lower transaction

costs.

In Table 5, we compare the performance of GMV portfolios implied by forecasts based on

MSSC specification (2c∗), with those by the benchmarks discussed in Section 4.2. In addition,

we consider a naive investment strategy assigning equal weights to all assets. The first major

observation is that the equally-weighted portfolios are associated with a considerably higher

ex-post portfolio volatility then all other methods. This finding is at odds with the study of

DeMiguel et al. (2009) who report that the naive diversification strategy outperforms those

employing covariance forecasts based on daily data. The second major result concerns the

superior performance of the MSSC forecasts compared to all benchmarks at the daily and

weekly horizon. This is in line with the findings from the Mincer-Zarnowitz regressions and

shows that the MSSC framework does not only provide accurate predictions of the covariance

matrix but also of its inverse. The benchmarks closest to the MSSC setting are the low-frequency

RiskMetrics and shrinkage forecasts. The former performs particularly well in the pre-crisis

period whereas the latter is beneficial during the crisis. The strong performance of the shrinkage

approach underlies the importance of a proper conditioning of the covariance matrix forecasts,

particularly in non-stable periods. Notably, the relative advantage of the MSSC approach, as

compared to the strongest benchmarks, increases during the crisis period with the difference in

median ex-post volatility rising from about five to 14 standard deviations for daily forecasts. The

superior performance of the HF-based MSSC predictions is obviously attributable to a faster

responsiveness to shocks. Moreover, we find that HF-based forecasts are valuable for horizons

up to approximately a month. In fact, over a monthly horizon, the MSSC approach slightly

(not significantly) underperforms compared to RiskMetrics in the pre-crisis period. Conversely,
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during the crisis period, the MSSC strategy still significantly outperforms any competitors –

even over a monthly forecasting horizon.

Studying the empirical features of the resulting portfolio allocations, we find that MSSC-

based forecasts yield both less concentrated (and thus more diversified) positions which, in

addition, imply less short-selling. Conversely, most of the low-frequency-based approaches

predict quite extreme asset allocations with significant short-selling proportions. Nevertheless,

we observe that the HF-based approaches induce more rebalancing and thus higher portfolio

turnovers. Hence, the above advantages come at the expense of higher transaction costs which

is may be due to the greater responsiveness of MSSC-based forecasts.

Finally, we compare MSSC specification (2c∗) with its counterpart employing the “plain”

multivariate realized kernel in terms of the implied GMV portfolio volatility. Although the

differences are relatively small, the blocked version yields a consistently lower ex-post portfolio

volatility for all forecasting horizons and both subsamples, which demonstrates that more

efficient covariance estimates are profitable even in out-of-sample forecasting settings.

6 Conclusions

This paper provides insights into the value of high-frequency (HF) data for short horizon

portfolio allocation decisions. The proposed method offers smaller global minimum portfolio

variances with smaller standard deviations, less concentrated allocations, and reduced short

positions. As a flexible framework, we introduce the multi-scale spectral components (MSSC)

model which constructs covariance predictions based on individual forecasts of spectral com-

ponents. The latter originate from covariance estimates produced by the blocked realized

kernel proposed by Hautsch et al. (2010). The dynamic features of correlation eigenvalues

and eigenvectors show that daily fluctuations can be driven by noise and motivate modeling

variance and correlation components individually. Positive definiteness and well-conditioning

of covariances are ensured by an adaptively chosen factor structure. The proposed framework

is evaluated against prevailing methods according to the models’ ability to predict (realized)

portfolio variances as well as their performance in global minimum variance (GMV) strategies.

Based on transaction data of the S&P 500 universe covering a period from 2006 to 2009,

we show the following major results: First, HF-based forecasts systematically outperform

low-frequency-based (daily) approaches for horizons up to a month. This is true based on

both forecasting criteria which indicates that the MSSC setting provides better forecasts of the

covariance matrix and its inverse. By distinguishing between a pre-crisis period and a crisis

period, we show that this finding is also stable over time. In turbulent market periods, such as

during the 2008 financial crisis, the superior performance of HF-based forecasts is even more
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pronounced. Second, stabilizing estimates (and forecasts) of eigenvalues and eigenvectors of the

correlation matrix reduces the impact of noisy variations and improves the forecasting quality.

This finding supports the idea that correlation dynamics are difficult to estimate on daily frequen-

cies confirming the results by, e.g., Andersen et al. (2006) and Ghysels et al. (2006). Likewise,

this result also implies that a mixing of time scales is valuable with variances evolving on higher

frequencies than correlation components. Third, forecasting future covariance components

by presently observed ones (potentially averaged over different periods) provides predictions

which are at least as good as forecasts where the individual components are predicted based on

autoregressive models. This finding is particularly true over long forecasting horizons indicating

that model-based predictions are ultimately too noisy. Fourth, predicted minimum variance

portfolio allocations are quite sensitive to the underlying forecasting approach. HF-based

forecasts provide more diversified (i.e., less concentrated) portfolio allocations implying less

short-sales constraints. Conversely, the improved performance of these frameworks comes at

the price of higher portfolio turnovers and possible transaction costs.

In conclusion, we suggest the following practical implementation of high frequency data in

short horizon portfolio allocation problems: (i) Use high-frequency data to efficiently estimate

variances and spectral components and identify the factor structure. (ii) Exploit the blocked

realized kernel to gain efficiency in underlying covariance estimates and to allow for better

signal extractions and noise-signal separations. (iii) Employ a locally (e.g. monthly) constant

eigenvector basis and smooth eigenvalues over time. This can be as simple as locally (weekly or

monthly) constant eigenvalues or one can consider a mixed-frequency based prediction model

such as a HAR model or a MIDAS approach.

Future avenues of research include relaxing the fixed-window-length segmentation proce-

dure in favor of a generalized dynamic factor model as, e.g., proposed by Forni et al. (2005).

The local stationarity assumption can be relaxed using the time-varying spectral density matrix

approach proposed in Eichler et al. (2011). Finally, as in Carrasco and Noumon (2010), the

portfolio allocation problem can be expanded to explicitly account for L1 constraints on port-

folio weights, as, e.g., studied by Fan et al. (2008b), or to consider alternative regularization

techniques.
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A Eigenvalue Cleaning

Eigenvalue cleaning is a regularization technique developed by Laloux et al. (1999) that draws

upon random matrix theory to determine the distribution of eigenvalues as a function of the

ratio of N observations relative to p dimensions q := N/p. The regularization focuses on

the correlation matrix R with spectral decomposition R = QΛQ′, where Q is the matrix

of eigenvectors and Λ = diag(λ1, . . . , λp) is the diagonal matrix of eigenvalues. Under the

null hypothesis of independent assets, the correlation matrix R is the identity matrix, and

the distribution of eigenvalues is given by the Marchenko–Pastur distribution with maximum

eigenvalue given by λmax := σ2
(
1 + 1/q + 2

√
1/q

)
, where σ2 is the variance of the entire

portfolio.

The principle of eigenvalue cleaning is to compare the empirical eigenvalues with those

arising under the null hypothesis of independent assets and to identify those eigenvalues which

deviate from those driven by noise. In particular, the largest estimated eigenvalue λ̂max clearly

violates the “pure noise” hypothesis and can be seen as a “market signal”. Removing this

eigenvalue and recomputing σ2 = 1− λ̂1/p (and correspondingly λmax) as the market-neutral

variance has the effect of “tightening” the Marchenko-Pastur density and allowing for smaller

signals to be better identified. Then, large positive eigenvalues greater than (the re-scaled) λmax

are identified as further “signals”. Eigenvalues smaller than this threshold are identified as

noise-driven eigenvalues and are transformed to take a value away from zero. In particular,

λ̃i :=

⎧⎨⎩λ̂i if λ̂i > λmax,

δ otherwise,
(39)

where the parameter δ is chosen such that the trace of the correlation matrix is preserved.

To ensure that the resulting matrix is positive definite, the trace of the positive semi-definite

projection of the correlation matrix is used. Hence,

δ :=
trace(R+)−

∑
(λ̂i>λmax) λ̂i

p− (
# of λ̂i > λmax

) . (40)

This results in a matrix R̂ = QL̂Q′, where L̂ := diag
(
λ̃i

)
.
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B Eigenvector Stability
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Figure 10: Eigenvector Stability for j = 1
Variability of eigenvectors from consecutive periods is measured by the angle as defined in equation (10).
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Figure 11: Eigenvector Stability for j = 2
Variability of eigenvectors from consecutive periods is measured by the angle as defined in equation (10).
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C Simulation Results
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Figure 12: Average Eigenvector Angles (j = 1) of Estimated Correlation Matrix, Equicorrelation
Form
Simulated distribution of average eigenvector angles of the correlation matrix based on realized covariance
estimates. Results rely on 1000 replications of the simulation described in Section 3.2. Covariance
structure is based on an equicorrelation matrix.
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Figure 13: Average Relative Change of Correlation Eigenvalues (j = 1), Equicorrelation Form
Simulated distribution of average unsigned relative changes of correlation eigenvalues based on realized
covariance estimates.
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Figure 14: Average Eigenvector Angles (j = 1) of Estimated Correlation Matrix, Toeplitz Form
Simulated distribution of average eigenvector angles of the correlation matrix based on realized covariance
estimates. Results rely on 1000 replications of the simulation described in Section 3.2. Covariance
structure is based on a symmetric Toeplitz correlation matrix.
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Figure 15: Average Relative Change of Correlation Eigenvalues (j = 1), Toeplitz Form
Simulated distribution of average unsigned relative changes of correlation eigenvalues based on realized
covariance estimates.
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