222 research outputs found
Les organoïdes intestinaux des animaux de rente : de nouveaux modèles de culture in vitro pour une meilleure compréhension du fonctionnement de l’intestin
L’intestin est un organe complexe aux fonctions multiples. En effet, il participe à la digestion et l'absorption des nutriments et protège l’individu des agressions par des agents pathogènes intestinaux en assurant un rôle de barrière. L’étude de ce compartiment digestif reste toutefois limitée par l’accès aux tissus que ce soit chez l’Homme ou l’animal. Dans ce contexte, le développement d’organoïdes intestinaux à partir de cellules souches représente une avancée technologique importante dans l’étude de la physiopathologie intestinale. De plus, cet outil permet de répondre à une demande sociétale visant à réduire l’usage d’animaux modèles pour la recherche et s’inscrit dans la démarche des 3Rs (Remplacement, Réduction et Raffinement).L’objectif de cette revue est, à partir de rappels de la fonction digestive, de faire un état des lieux sur les différents types d’organoïdes intestinaux existants dérivés d’animaux de rente et de discuter leurs avantages, leurs limites et surtout leur application
Neonate Intestinal Immune Response to CpG Oligodeoxynucleotide Stimulation
Background: The development of mucosal vaccines is crucial to efficiently control infectious agents for which mucosae are the primary site of entry. Major drawbacks of these protective strategies are the lack of effective mucosal adjuvant. Synthetic oligodeoxynucleotides that contain several unmethylated cytosine-guanine dinucleotide (CpG-ODN) motifs are now recognized as promising adjuvants displaying mucosal adjuvant activity through direct activation of TLR9-expressing cells. However, little is known about the efficacy of these molecules in stimulating the intestinal immune system in neonates. Methodology/Principal Findings: First, newborn mice received CpG-ODN orally, and the intestinal cytokine and chemokine response was measured. We observed that oral administration of CpG-ODN induces CXC and CC chemokine responses and a cellular infiltration in the intestine of neonates as detected by immunohistochemistry. We next compared the efficiency of the oral route to intraperitoneal administration in stimulating the intestinal immune responses of both adults and neonates. Neonates were more responsive to TLR9-stimulation than adults whatever the CpG-ODN administration route. Their intestinal epithelial cells (IECs) indirectly responded to TLR9 stimulation and contributed to the CXC chemokine response, whereas other TLR9-bearing cells of the lamina-propria produced CC chemokines and Th1-type cytokines. Moreover, we showed that the intestine of adult exhibited a significantly higher level of IL10 at homeostasis than neonates, which might be responsible for the unresponsiveness to TLR9-stimulation, as confirmed by our findings in IL10-deficient mice. Conclusions/Significance: This is the first report that deciphers the role played by CpG-ODN in the intestine of neonates. This work clearly demonstrates that an intraperitoneal administration of CpG-ODN is more efficient in neonates than in adults to stimulate an intestinal chemokine response due to their lower IL-10 intestinal level. In addition we report the efficiency of the oral route at inducing intestinal chemokine responses in neonate that might be taken into consideration for further vaccine development against neonatal diseases
Mesenteric lymph node cells from neonates present a prominent IL-12 response to CpG oligodeoxynucleotide via an IL-15 feedback loop of amplification
At birth, the immune system is still in development making neonates more susceptible to infections. The recognition of microbial ligands is a key step in the initiation of immune responses. It can be mimicked to stimulate the immune system by the use of synthetic ligands recognising pattern recognition receptors. In human and mouse, it has been found that neonatal cytokine responses to toll-like receptor (TLR) ligands differ in many ways from those of adults but the relevant studies have been limited to cord blood and spleen cells. In this study, we compared the responses in neonate and adult sheep to CpG oligodeoxynucleotides (ODN), a TLR9 ligand, in both a mucosal and a systemic organ. We observed that in response to CpG-ODN more IL-12 was produced by neonatal than adult sheep cells from mesenteric lymph nodes (MLN) and spleen. This higher IL-12 response was limited to the first 20 days after birth for MLN cells but persisted for a longer period for spleen cells. The major IL-12-producing cells were identified as CD14+CD11b+. These cells were poor producers of IL-12 in response to direct stimulation with CpG-ODN and required the cooperation of other MLN cells. The difference in response to CpG-ODN between neonates and adults can be attributed to both a higher proportion of CD14+CD11b+ cells in neonate lambs and their higher capacity to produce IL-15. The IL-15 increases IL-12 production by an amplifying feedback loop involving CD40
Update on Cryptosporidium spp.: highlights from the Seventh International Giardia and Cryptosporidium Conference
While cryptosporidiosis is recognized as being among the most common causes of human parasitic diarrhea in the world, there is currently limited knowledge on Cryptosporidium infection mechanisms, incomplete codification of diagnostic methods, and a need for additional therapeutic options. In response, the Seventh International Giardia and Cryptosporidium Conference (IGCC 2019) was hosted from 23 to 26 June 2019, at the Rouen Normandy University, France. This trusted event brought together an international delegation of researchers to synthesize recent advances and identify key research questions and knowledge gaps. The program of the interdisciplinary conference included all aspects of host-parasite relationships from basic research to applications to human and veterinary medicine, and environmental issues associated with waterborne parasites and their epidemiological consequences. In relation to Cryptosporidium and cryptosporidiosis, the primary research areas for which novel findings and the most impressive communications were presented and discussed included: Cryptosporidium in environmental waters, seafood, and fresh produce; Animal epidemiology; Human cryptosporidiosis and epidemiology; Genomes and genomic evolution encompassing: Comparative genomics of Cryptosporidium spp., Genomic insights into biology, Acquiring and utilizing genome sequences, Genetic manipulation; Host-parasite interaction (immunology, microbiome); and Diagnosis and treatment. High quality presentations discussed at the conference reflected decisive progress and identified new opportunities that will engage investigators and funding agencies to spur future research in a “one health” approach to improve basic knowledge and the clinical and public health management of zoonotic cryptosporidiosis
Cellular and Molecular Mechanisms Underlying the Strong Neonatal IL-12 Response of Lamb Mesenteric Lymph Node Cells to R-848
International audienceabsen
Characterization of intestinal mononuclear phagocyte subsets in young ruminants at homeostasis and during Cryptosporidium parvum infection
IntroductionCryptosporidiosis is a poorly controlled zoonosis caused by an intestinal parasite, Cryptosporidium parvum, with a high prevalence in livestock (cattle, sheep, and goats). Young animals are particularly susceptible to this infection due to the immaturity of their intestinal immune system. In a neonatal mouse model, we previously demonstrated the importance of the innate immunity and particularly of type 1 conventional dendritic cells (cDC1) among mononuclear phagocytes (MPs) in controlling the acute phase of C. parvum infection. These immune populations are well described in mice and humans, but their fine characterization in the intestine of young ruminants remained to be further explored.MethodsImmune cells of the small intestinal Peyer’s patches and of the distal jejunum were isolated from naive lambs and calves at different ages. This was followed by their fine characterization by flow cytometry and transcriptomic analyses (q-RT-PCR and single cell RNAseq (lamb cells)). Newborn animals were infected with C. parvum, clinical signs and parasite burden were quantified, and isolated MP cells were characterized by flow cytometry in comparison with age matched control animals.ResultsHere, we identified one population of macrophages and three subsets of cDC (cDC1, cDC2, and a minor cDC subset with migratory properties) in the intestine of lamb and calf by phenotypic and targeted gene expression analyses. Unsupervised single-cell transcriptomic analysis confirmed the identification of these four intestinal MP subpopulations in lamb, while highlighting a deeper diversity of cell subsets among monocytic and dendritic cells. We demonstrated a weak proportion of cDC1 in the intestine of highly susceptible newborn lambs together with an increase of these cells within the first days of life and in response to the infection.DiscussionConsidering cDC1 importance for efficient parasite control in the mouse model, one may speculate that the cDC1/cDC2 ratio plays also a key role for the efficient control of C. parvum in young ruminants. In this study, we established the first fine characterization of intestinal MP subsets in young lambs and calves providing new insights for comparative immunology of the intestinal MP system across species and for future investigations on host–Cryptosporidium interactions in target species
Cryptosporidium Priming Is More Effective than Vaccine for Protection against Cryptosporidiosis in a Murine Protein Malnutrition Model
Cryptosporidium is a major cause of severe diarrhea, especially in malnourished children. Using a murine model of C. parvum oocyst challenge that recapitulates clinical features of severe cryptosporidiosis during malnutrition, we interrogated the effect of protein malnutrition (PM) on primary and secondary responses to C. parvum challenge, and tested the differential ability of mucosal priming strategies to overcome the PM-induced susceptibility. We determined that while PM fundamentally alters systemic and mucosal primary immune responses to Cryptosporidium, priming with C. parvum (106 oocysts) provides robust protective immunity against re-challenge despite ongoing PM. C. parvum priming restores mucosal Th1-type effectors (CD3+CD8+CD103+ T-cells) and cytokines (IFNγ, and IL12p40) that otherwise decrease with ongoing PM. Vaccination strategies with Cryptosporidium antigens expressed in the S. Typhi vector 908htr, however, do not enhance Th1-type responses to C. parvum challenge during PM, even though vaccination strongly boosts immunity in challenged fully nourished hosts. Remote non-specific exposures to the attenuated S. Typhi vector alone or the TLR9 agonist CpG ODN-1668 can partially attenuate C. parvum severity during PM, but neither as effectively as viable C. parvum priming. We conclude that although PM interferes with basal and vaccine-boosted immune responses to C. parvum, sustained reductions in disease severity are possible through mucosal activators of host defenses, and specifically C. parvum priming can elicit impressively robust Th1-type protective immunity despite ongoing protein malnutrition. These findings add insight into potential correlates of Cryptosporidium immunity and future vaccine strategies in malnourished children
The caecal microbiota promotes the acute inflammatory response and the loss of the intestinal barrier integrity during severe Eimeria tenella infection
IntroductionCoccidiosis, a disease caused by intestinal apicomplexan parasites Eimeria, is a threat to poultry production. Eimeria tenella is one of the most pathogenic species, frequently causing a high prevalence of opportunistic infections.ObjectiveThe objective of this study is to investigate the role of the microbiota in the pathogenesis of severe Eimeria tenella infection.MethodsWe have previously shown that microbiota can promote parasite development. To study the effect of the microbiota on the pathogenesis of this infection, we used an experimental condition (inoculum of 10 000 oocysts E. tenella INRAE) in which the parasite load is similar between germ-free and conventional broilers at 7 days post-infection (pi). Thirteen conventional and 24 germ-free chickens were infected. Among this latter group, 12 remained germ-free and 12 received a microbiota from conventional healthy chickens at 4 days pi. Caeca and spleens were collected at 7 days pi.ResultsOur results demonstrated caecal lesions and epithelium damage in conventional chickens at 7 days pi but not in germ-free infected chickens. Administration of conventional microbiota to germ-free chickens partially restored these deleterious effects. At day 7 pi, both infected conventional and germ-free chickens exhibited increased gene expression of inflammatory mediators, including IL15, IFNγ, TNFα and the anti-inflammatory mediator SOCS1, whereas the inflammatory mediators CXCLi2, CCL20, IL18, CSF1, NOS2, PTGS2, IL1β, IL6, the receptor CCR2, and the anti-inflammatory mediators TGFβ1 and IL10 were upregulated only in infected conventional chickens. Notably, the IL18, PTGS2 gene expression was significantly higher in the infected conventional group. Overall, the inflammatory response enhanced by the microbiota might be in part responsible for higher lesion scores. Epithelial tight junction protein gene expression analysis revealed a significant upregulation of CLDN1 with the infection and microbiota, indicating a potential loss of the intestinal barrier integrity.ConclusionThese observations imply that, during E. tenella infection, the caecal microbiota could trigger an acute inflammatory response, resulting in a loss of intestinal integrity. Increase in bacterial translocation can then lead to the likelihood of opportunistic infections. Hence, modulating the microbiota may offer a promising strategy for improving poultry gut health and limiting caecal coccidiosis
Bovine cryptosporidiosis: impact, host-parasite interaction and control strategies
International audienceAbstractGastrointestinal disease caused by the apicomplexan parasite Cryptosporidium parvum is one of the most important diseases of young ruminant livestock, particularly neonatal calves. Infected animals may suffer from profuse watery diarrhoea, dehydration and in severe cases death can occur. At present, effective therapeutic and preventative measures are not available and a better understanding of the host–pathogen interactions is required. Cryptosporidium parvum is also an important zoonotic pathogen causing severe disease in people, with young children being particularly vulnerable. Our knowledge of the immune responses induced by Cryptosporidium parasites in clinically relevant hosts is very limited. This review discusses the impact of bovine cryptosporidiosis and describes how a thorough understanding of the host–pathogen interactions may help to identify novel prevention and control strategies
- …