8,381 research outputs found
Using datasets from the Internet for hydrological modeling: an example from the Kntnk Menderes Basin, Turkey
River basin development / Water resources / Data collection / Models / Hydrology / Land classification / Water management / Water scarcity / Water allocation / Stream flow / Water demand / Turkey / Kntnk Menderes Basin
Thermodynamics of small superconductors with fixed particle number
The Variation After Projection approach is applied for the first time to the
pairing hamiltonian to describe the thermodynamics of small systems with fixed
particle number. The minimization of the free energy is made by a direct
diagonalization of the entropy. The Variation After Projection applied at
finite temperature provides a perfect reproduction of the exact canonical
properties of odd or even systems from very low to high temperature.Comment: 4 pages, 3 figure
Graphene in periodically alternating magnetic field: unusual quantization of the anomalous Hall effect
We study the energy spectrum and electronic properties of graphene in a
periodic magnetic field of zero average with a symmetry of triangular lattice.
The periodic field leads to formation of a set of minibands separated by gaps,
which can be manipulated by external field. The Berry phase, related to the
motion of electrons in space, and the corresponding Chern numbers
characterizing topology of the energy bands are calculated analytically and
numerically. In this connection, we discuss the anomalous Hall effect in the
insulating state, when the Fermi level is located in the minigap. The results
of calculations show that in the model of gapless Dirac spectrum of graphene
the anomalous Hall effect can be treated as a sum of fractional quantum
numbers, related to the nonequivalent Dirac points.Comment: 6 pages, 5 figure
Density-matrix functionals for pairing in mesoscopic superconductors
A functional theory based on single-particle occupation numbers is developed
for pairing. This functional, that generalizes the BCS approach, directly
incorporates corrections due to particle number conservation. The functional is
benchmarked with the pairing Hamiltonian and reproduces perfectly the energy
for any particle number and coupling.Comment: 4 pages, 4 figures, revised versio
Bimodality as a signal of Liquid-Gas phase transition in nuclei?
We use the HIPSE (Heavy-Ion Phase-Space Exploration) Model to discuss the
origin of the bimodality in charge asymmetry observed in nuclear reactions
around the Fermi energy. We show that it may be related to the important
angular momentum (spin) transferred into the quasi-projectile before secondary
decay. As the spin overcomes the critical value, a sudden opening of decay
channels is induced and leads to a bimodal distribution for the charge
asymmetry. In the model, it is not assigned to a liquid-gas phase transition
but to specific instabilities in nuclei with high spin. Therefore, we propose
to use these reactions to study instabilities in rotating nuclear droplets.Comment: 4 pages, 4 figures Accepted to PR
Magnetoresistance and collective Coulomb blockade in super-lattices of ferromagnetic CoFe nanoparticles
We report on transport properties of millimetric super-lattices of CoFe
nanoparticles surrounded by organic ligands. R(T)s follow R(T) =
R_0.exp(T/T_0)^0.5 with T_0 ranging from 13 to 256 K. At low temperature I(V)s
follow I=K[(V-V_T)/V_T]^ksi with ksi ranging 3.5 to 5.2. I(V) superpose on a
universal curve when shifted by a voltage proportional to the temperature.
Between 1.8 and 10 K a high-field magnetoresistance with large amplitude and a
strong voltage-dependence is observed. Its amplitude only depends on the
magnetic field/temperature ratio. Its origin is attributed to the presence of
paramagnetic states present at the surface or between the nanoparticles. Below
1.8 K, this high-field magnetoresistance abruptly disappears and inverse
tunnelling magnetoresistance is observed, the amplitude of which does not
exceed 1%. At this low temperature, some samples display in their I(V)
characteristics abrupt and hysteretic transitions between the Coulomb blockade
regime and the conductive regime. The increase of the current during these
transitions can be as high as a factor 30. The electrical noise increases when
the sample is near the transition. The application of a magnetic field
decreases the voltage at which these transitions occur so magnetic-field
induced transitions are also observed. Depending on the applied voltage, the
temperature and the amplitude of the magnetic field, the magnetic-field induced
transitions are either reversible or irreversible. These abrupt and hysteretic
transitions are also observed in resistance-temperature measurements. They
could be the soliton avalanches predicted by Sverdlov et al. [Phys. Rev. B 64,
041302 (R), 2001] or could also be interpreted as a true phase transition
between a Coulomb glass phase to a liquid phase of electrons
Multiple Scales in the Fine Structure of the Isoscalar Giant Quadrupole Resonance in ^{208}Pb
The fine structure of the isoscalar giant quadrupole resonance in ^{208}Pb,
observed in high-resolution (p,p') and (e,e') experiments, is studied using the
entropy index method. In a novel way, it enables to determine the number of
scales present in the spectra and their magnitude. We find intermediate scales
of fluctuations around 1.1 MeV, 460 keV and 125 keV for an excitation energy
region 0 - 12 MeV. A comparison with scales extracted from second RPA
calculations, which are in good agreement with experiment, shows that they
arise from the internal mixing of collective motion with two particle-two hole
components of the nuclear wavefunction.Comment: 14 pages including 6 figures (to be published in Phys. Lett. B
Anomalous Hall Effect due to the spin chirality in the Kagom\'{e} lattice
We consider a model for a two dimensional electron gas moving on a kagom\'{e}
lattice and locally coupled to a chiral magnetic texture. We show that the
transverse conductivity does not vanish even if spin-orbit
coupling is not present and it may exhibit unusual behavior. Model parameters
are the chirality, the number of conduction electrons and the amplitude of the
local coupling. Upon varying these parameters, a topological transition
characterized by change of the band Chern numbers occur. As a consequence,
can be quantized, proportional to the chirality or have a non
monotonic behavior upon varying these parameters.Comment: 8 pages, 7 figure
Pairing dynamics in particle transport
We analyze the effect of pairing on particle transport in time-dependent
theories based on the Hartree-Fock-Bogoliubov (HFB) or BCS approximations. The
equations of motion for the HFB density matrices are unique and the theory
respects the usual conservation laws defined by commutators of the conserved
quantity with the Hamiltonian. In contrast, the theories based on the BCS
approximation are more problematic. In the usual formulation of TDHF+BCS, the
equation of continuity is violated and one sees unphysical oscillations in
particle densities. This can be ameliorated by freezing the occupation numbers
during the evolution in TDHF+BCS, but there are other problems with the BCS
that make it doubtful for reaction dynamics. We also compare different
numerical implementations of the time-dependent HFB equations. The equations of
motion for the and Bogoliubov transformations are not unique, but it
appears that the usual formulation is also the most efficient. Finally, we
compare the time-dependent HFB solutions with numerically exact solutions of
the two-particle Schrodinger equation. Depending on the treatment of the
initial state, the HFB dynamics produces a particle emission rate at short
times similar to that of the Schrodinger equation. At long times, the total
particle emission can be quite different, due to inherent mean-field
approximation of the HFB theory.Comment: 11 pages, 9 figure
Energy dependence of nucleus-nucleus potential close to the Coulomb barrier
The nucleus-nucleus interaction potentials in heavy-ion fusion reactions are
extracted from the microscopic time-dependent Hartree-Fock theory for mass
symmetric reactions OO, CaCa,
CaCa and mass asymmetric reactions OCa,
CaCa, O+Pb, Ca+Zr. When the
center-of-mass energy is much higher than the Coulomb barrier energy,
potentials deduced with the microscopic theory identify with the frozen density
approximation. As the center-of-mass energy decreases and approaches the
Coulomb barrier, potentials become energy dependent. This dependence signs
dynamical reorganization of internal degrees of freedom and leads to a
reduction of the "apparent" barrier felt by the two nuclei during fusion of the
order of compared to the frozen density case. Several examples
illustrate that the potential landscape changes rapidly when the center-of-mass
energy is in the vicinity of the Coulomb barrier energy. The energy dependence
is expected to have a significant role on fusion around the Coulomb barrier.Comment: 11 pages, 13 figures, 1 table, discussion of effects of
coordinate-dependent mass added, accepted for publication in Phys. Rev.
- …