10,617 research outputs found

    Asymptotics for hitting times

    Full text link
    In this paper we characterize possible asymptotics for hitting times in aperiodic ergodic dynamical systems: asymptotics are proved to be the distribution functions of subprobability measures on the line belonging to the functional class {6pt} {-3mm}(A){6mm}F={F:R\to [0,1]:\left\lbrack \matrixF is increasing, null on ]-\infty, 0]; \noalignF is continuous and concave; \noalignF(t)\le t for t\ge 0.\right.}. {6pt} Note that all possible asymptotics are absolutely continuous.Comment: Published at http://dx.doi.org/10.1214/009117904000000883 in the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org

    About the barotropic compressible quantum Navier-Stokes equations

    Get PDF
    In this paper we consider the barotropic compressible quantum Navier-Stokes equations with a linear density dependent viscosity and its limit when the scaled Planck constant vanish. Following recent works on degenerate compressible Navier-Stokes equations, we prove the global existence of weak solutions by the use of a singular pressure close to vacuum. With such singular pressure, we can use the standard definition of global weak solutions which also allows to justify the limit when the scaled Planck constant denoted by ϵ\epsilon tends to 0

    Configuration mixing within the energy density functional formalism: pathologies and cures

    Full text link
    Configuration mixing calculations performed in terms of the Skyrme/Gogny Energy Density Functional (EDF) rely on extending the Single-Reference energy functional into non-diagonal EDF kernels. The standard way to do so, based on an analogy with the pure Hamiltonian case and the use of the generalized Wick theorem, is responsible for the recently observed divergences and steps in Multi-Reference calculations. We summarize here the minimal solution to this problem recently proposed [Lacroix et al, arXiv:0809.2041] and applied with success to particle number restoration[Bender et al, arXiv:0809.2045]. Such a regularization method provides suitable corrections of pathologies for EDF depending on integer powers of the density. The specific case of fractional powers of the density[Duguet et al, arXiv:0809.2049] is also discussed.Comment: 5 pages, Proceedings of the French-Japanese Symposium, September 2008. To be published in Int. J. of Mod. Phys.

    A Lee-Yang--inspired functional with a density--dependent neutron-neutron scattering length

    Full text link
    Inspired by the low--density Lee-Yang expansion for the energy of a dilute Fermi gas of density ρ\rho and momentum kFk_F, we introduce here a Skyrme--type functional that contains only ss-wave terms and provides, at the mean--field level, (i) a satisfactory equation of state for neutron matter from extremely low densities up to densities close to the equilibrium point, and (ii) a good--quality equation of state for symmetric matter at density scales around the saturation point. This is achieved by using a density--dependent neutron-neutron scattering length a(ρa(\rho) which satisfies the low--density limit (for Fermi momenta going to zero) and has a density dependence tuned in such a way that the low--density constraint a(ρ)kF1|a(\rho) k_F| \le 1 is satisfied at all density scales.Comment: 5 figure

    Ultrafast dynamics of finite Hubbard clusters - a stochastic mean-field approach

    Full text link
    Finite lattice models are a prototype for strongly correlated quantum systems and capture essential properties of condensed matter systems. With the dramatic progress in ultracold atoms in optical lattices, finite fermionic Hubbard systems have become directly accessible in experiments, including their ultrafast dynamics far from equilibrium. Here, we present a theoretical approach that is able to treat these dynamics in any dimension and fully includes inhomogeneity effects. The method consists in stochastic sampling of mean-field trajectories and is found to be more accurate and efficient than current nonequilibrium Green functions approaches. This is demonstrated for Hubbard clusters with up to 512 particles in one, two and three dimensions

    From dilute matter to the equilibrium point in the energy--density--functional theory

    Full text link
    Due to the large value of the scattering length in nuclear systems, standard density--functional theories based on effective interactions usually fail to reproduce the nuclear Fermi liquid behavior both at very low densities and close to equilibrium. Guided on one side by the success of the Skyrme density functional and, on the other side, by resummation techniques used in Effective Field Theories for systems with large scattering lengths, a new energy--density functional is proposed. This functional, adjusted on microscopic calculations, reproduces the nuclear equations of state of neutron and symmetric matter at various densities. Furthermore, it provides reasonable saturation properties as well as an appropriate density dependence for the symmetry energy.Comment: 4 figures, 2 table

    Voltage induced control and magnetoresistance of noncollinear frustrated magnets

    Full text link
    Noncollinear frustrated magnets are proposed as a new class of spintronic materials with high magnetoresistance which can be controlled with relatively small applied voltages. It is demonstrated that their magnetic configuration strongly depends on position of the Fermi energy and applied voltage. The voltage induced control of noncollinear frustrated materials (VCFM) can be seen as a way to intrinsic control of colossal magnetoresistance (CMR) and is the bulk material counterpart of spin transfer torque concept used to control giant magnetoresistance in layered spin-valve structures.Comment: 4 pages, 4 figure

    A frequency-adjustable electromagnet for hyperthermia measurements on magnetic nanoparticles

    Full text link
    We describe a low-cost and simple setup for hyperthermia measurements on colloidal solutions of magnetic nanoparticles (ferrofluids) with a frequency-adjustable magnetic field in the range 5-500 kHz produced by an electromagnet. By optimizing the general conception and each component (nature of the wires, design of the electromagnet), a highly efficient setup is obtained. For instance, in a useful gap of 1.1 cm, a magnetic field of 4.8 mT is generated at 100 kHz and 500 kHz with an output power of 3.4 W and 75 W, respectively. A maximum magnetic field of 30 mT is obtained at 100 kHz. The temperature of the colloidal solution is measured using optical fiber sensors. To remove contributions due to heating of the electromagnet, a differential measurement is used. In this configuration the sensitivity is better than 1.5 mW at 100 kHz and 19.3 mT. This setup allows one to measure weak heating powers on highly diluted colloidal solutions. The hyperthermia characteristics of a solution of Fe nanoparticles are described, where both the magnetic field and the frequency dependence of heating power have been measured

    Using datasets from the Internet for hydrological modeling: an example from the Kntnk Menderes Basin, Turkey

    Get PDF
    River basin development / Water resources / Data collection / Models / Hydrology / Land classification / Water management / Water scarcity / Water allocation / Stream flow / Water demand / Turkey / Kntnk Menderes Basin

    Pair-transfer probability in open- and closed-shell Sn isotopes

    Full text link
    Approximations made to estimate two-nucleon transfer probabilities in ground-state to ground-state transitions and physical interpretation of these probabilities are discussed. Probabilities are often calculated by approximating both ground states, of the initial nucleus A and of the final nucleus A\pm 2 by the same quasiparticle vacuum. We analyze two improvements of this approach. First, the effect of using two different ground states with average numbers of particles A and A\pm2 is quantified. Second, by using projection techniques, the role of particle number restoration is analyzed. Our analysis shows that the improved treatment plays a role close to magicity, leading to an enhancement of the pair-transfer probability. In mid-shell regions, part of the error made by approximating the initial and final ground states by a single vacuum is compensated by projecting onto good particle number. Surface effects are analyzed by using pairing interactions with a different volume-to-surface mixing. Finally, a simple expression of the pair-transfer probability is given in terms of occupation probabilities in the canonical basis. We show that, in the canonical basis formulation, surface effects which are visible in the transfer probability are related to the fragmentation of single-particle occupancies close to the Fermi energy. This provides a complementary interpretation with respect to the standard quasiparticle representation where surface effects are generated by the integrated radial profiles of the contributing wave functions.Comment: 12 pages, 7 figure
    corecore