6,302 research outputs found
Functional approach for pairing in finite systems: How to define restoration of broken symmetries in Energy Density Functional theory ?
The Multi-Reference Energy Density Functional (MR-EDF) approach (also called
configuration mixing or Generator Coordinate Method), that is commonly used to
treat pairing in finite nuclei and project onto particle number, is
re-analyzed. It is shown that, under certain conditions, the MR-EDF energy can
be interpreted as a functional of the one-body density matrix of the projected
state with good particle number. Based on this observation, we propose a new
approach, called Symmetry-Conserving EDF (SC-EDF), where the breaking and
restoration of symmetry are accounted for simultaneously. We show, that such an
approach is free from pathologies recently observed in MR-EDF and can be used
with a large flexibility on the density dependence of the functional.Comment: proceeding of the conference "Many body correlations from dilute to
dense Nuclear systems", Paris, February 201
High Dimensional Classification with combined Adaptive Sparse PLS and Logistic Regression
Motivation: The high dimensionality of genomic data calls for the development
of specific classification methodologies, especially to prevent over-optimistic
predictions. This challenge can be tackled by compression and variable
selection, which combined constitute a powerful framework for classification,
as well as data visualization and interpretation. However, current proposed
combinations lead to instable and non convergent methods due to inappropriate
computational frameworks. We hereby propose a stable and convergent approach
for classification in high dimensional based on sparse Partial Least Squares
(sparse PLS). Results: We start by proposing a new solution for the sparse PLS
problem that is based on proximal operators for the case of univariate
responses. Then we develop an adaptive version of the sparse PLS for
classification, which combines iterative optimization of logistic regression
and sparse PLS to ensure convergence and stability. Our results are confirmed
on synthetic and experimental data. In particular we show how crucial
convergence and stability can be when cross-validation is involved for
calibration purposes. Using gene expression data we explore the prediction of
breast cancer relapse. We also propose a multicategorial version of our method
on the prediction of cell-types based on single-cell expression data.
Availability: Our approach is implemented in the plsgenomics R-package.Comment: 9 pages, 3 figures, 4 tables + Supplementary Materials 8 pages, 3
figures, 10 table
Magnetic hyperthermia in single-domain monodisperse FeCo nanoparticles: Evidences for Stoner-Wohlfarth behaviour and large losses
We report on hyperthermia measurements on a colloidal solution of 15 nm
monodisperse FeCo nanoparticles (NPs). Losses as a function of the magnetic
field display a sharp increase followed by a plateau, which is what is expected
for losses of ferromagnetic single-domain NPs. The frequency dependence of the
coercive field is deduced from hyperthermia measurement and is in quantitative
agreement with a simple model of non-interacting NPs. The measured losses (1.5
mJ/g) compare to the highest of the literature, though the saturation
magnetization of the NPs is well below the bulk one.Comment: 14 pages, 3 figure
Observations of Above-Surface Littoral Foraging in Two Sea Ducks, Barrow's Goldeneye, Bucephala islandica, and Surf Scoter, Melanitta perspicillata, in Coastal Southwestern British Columbia
Barrow's Goldeneyes (Bucephala islandica) and Surf Scoters (Melanitta perspicillata) were observed on four separate occasions, by three different observers, foraging on Bay Mussels (Mytilus trossulus) above the water surface. This unique foraging behaviour could be attributed to diurnal spring tides and reduced lower intertidal mussel abundance
Transfemoral treatment for iliac occlusive disease with endoluminal stent-grafts
Objectives:Percutaneous treatment of iliac artery occlusive disease has replaced open vascular reconstruction for several indications. A balloon angioplasty with or without stent is not an option in the presence of infrainguinal extension of the disease. The authors describe a technique that allows the construction of an aorto- or iliofemoral graft through a single groin incision, using a 4 mm PTFE graft, anchoring it proximally with a Palmaz stent and dilating both to the desired diameter.Design:Retrospective non-randomised study.Materials and Methods:Nineteen procedures were performed in 16 patients mainly because of ischaemic rest pain, often with trophic skin changes or minor gangrene. Three patients had a bilateral procedure. Twelve patients had one or more associated procedures: 10 distal bypasses, one thrombectomy, one reimplantation of a distal bypass on the iliofemoral graft, one contralateral profundaplasty and two stents of the contralateral common iliac artery.Results:Two patients died, one of small bowel ischaemia and the other of a myocardial infarction. During the mean follow-up of 8.8 months, two graft thromboses occurred. In another patient bilateral stenting of a residual stenosis was necessary.Conclusions:Our experience shows that the reported technique is feasible. Whether the procedure is truly “less invasive” and the long-term results acceptable remains to be shown
Description of Pairing correlation in Many-Body finite systems with density functional theory
Different steps leading to the new functional for pairing based on natural
orbitals and occupancies proposed in ref. [D. Lacroix and G. Hupin,
arXiv:1003.2860] are carefully analyzed. Properties of quasi-particle states
projected onto good particle number are first reviewed. These properties are
used (i) to prove the existence of such a functional (ii) to provide an
explicit functional through a 1/N expansion starting from the BCS approach
(iii) to give a compact form of the functional summing up all orders in the
expansion. The functional is benchmarked in the case of the picked fence
pairing Hamiltonian where even and odd systems, using blocking technique are
studied, at various particle number and coupling strength, with uniform and
random single-particle level spacing. In all cases, a very good agreement is
found with a deviation inferior to 1% compared to the exact energy.Comment: 14 pages, 9 figure
Out of equilibrium transport through an Anderson impurity: Probing scaling laws within the equation of motion approach
We study non-equilibrium electron transport through a quantum impurity
coupled to metallic leads using the equation of motion technique at finite
temperature T. Assuming that the interactions are taking place solely in the
impurity and focusing in the infinite Hubbard limit, we compute the out of
equilibrium density of states and the differential conductance G_2(T,V) to test
several scaling laws. We find that G_2(T,V)/G_2(T,0) is a universal function of
both eV/T_K and T/T_K, being T_K the Kondo temperature. The effect of an in
plane magnetic field on the splitting of the zero bias anomaly in the
differential conductance is also analyzed. For a Zeeman splitting \Delta, the
computed differential conductance peak splitting depends only on \Delta/T_K,
and for large fields approaches the value of 2\Delta . Besides the traditional
two leads setup, we also consider other configurations that mimics recent
experiments, namely, an impurity embedded in a mesoscopic wire and the presence
of a third weakly coupled lead. In these cases, a double peak structure of the
Kondo resonance is clearly obtained in the differential conductance while the
amplitude of the highest peak is shown to decrease as \ln(eV/T_K). Several
features of these results are in qualitative agreement with recent experimental
observations reported on quantum dots.Comment: 9 pages, 7 figure
Fermi Surface of The One-dimensional Kondo Lattice Model
We show a strong indication of the existence of a large Fermi surface in the
one-dimensional Kondo lattice model. The characteristic wave vector of the
model is found to be , being the density of the
conduction electrons. This result is at first obtained for a variant of the
model that includes an antiferromagnetic Heisenberg interaction between
the local moments. It is then directly observed in the conventional Kondo
lattice , in the narrow range of Kondo couplings where the long
distance properties of the model are numerically accessible.Comment: 11 pages, 6 figure
Internal structure of nanoparticles of Al generated by laser ablation in liquid ethanol
Al NPs are synthesized by laser ablation of a bulk Al target immersed into
liquid ethanol saturated with hydrogen at atmospheric pressure. The
nanoparticles possess a well-distinguished core-shell structure. High
Resolution Transmission Electron Microscopy shows several layers inside the Al
nanoparticle: oxide layer, amorphous Al, single crystal Al, and a cavity in the
center. Formation of the cavity is attributed to the sharp increase of hydrogen
dissolution in Al upon its melting and its eventual release after the
solidification
Particle-Number Restoration within the Energy Density Functional Formalism
We give a detailed analysis of the origin of spurious divergences and finite
steps that have been recently identified in particle-number restoration
calculations within the nuclear energy density functional framework. We isolate
two distinct levels of spurious contributions to the energy. The first one is
encoded in the definition of the basic energy density functional itself whereas
the second one relates to the canonical procedure followed to extend the use of
the energy density functional to multi-reference calculations. The first level
of spuriosity relates to the long-known self-interaction problem and to the
newly discussed self-pairing interaction process which might appear when
describing paired systems with energy functional methods using auxiliary
reference states of Bogoliubov or BCS type. A minimal correction to the second
level of spuriosity to the multi-reference nuclear energy density functional
proposed in [D. Lacroix, T. Duguet, M. Bender, arXiv:0809.2041] is shown to
remove completely the anomalies encountered in particle-number restored
calculations. In particular, it restores sum-rules over (positive) particle
numbers that are to be fulfilled by the particle-number-restored formalism. The
correction is found to be on the order of several hundreds of keVs up to about
1 MeV in realistic calculations, which is small compared to the total binding
energy, but often accounts for a substantial percentage of the energy gain from
particle-number restoration and is on the same energy scale as the excitations
one addresses with multi-reference energy density functional methods.Comment: 37 pages, 14 figures, accepted for publication in PR
- …