9,397 research outputs found

    Heavy fermion behavior of itinerant frustrated systems: beta-Mn, Y(Sc)Mn_{2} and LiV_{2}O_{4}$

    Full text link
    These three metallic systems do not exhibit any magnetic ordering despite experiments show the existence of localized moments with large antiferromagnetic exchange: this is a consequence of the strong geometric frustration (Y(Sc)Mn_{2} and LiV_{2}O_{4} have the Pyrochlore structure, while beta-Mn has a more complicated frustrated structure). Another common feature is their very large specific heat coefficient \gamma =C/T (420 mJ mole^{-1} K^{-2} for LiV_{2}O_{4}). Several explanations have been proposed for this ''3d heavy fermion behavior'', including a 3d-Kondo effect. However the similarities between the three compounds indicate that frustration plays a big role. We propose a new model which takes into account the existence of two types of 3d-electrons (localized and itinerant) and a frustrated antiferromagnetic exchange between the localized 3d electrons.Comment: Proceedings of HFM-Conference, June 2000, Waterloo, Ontario, Canada To appear in Can. J. Phy

    A Lee-Yang--inspired functional with a density--dependent neutron-neutron scattering length

    Full text link
    Inspired by the low--density Lee-Yang expansion for the energy of a dilute Fermi gas of density ρ\rho and momentum kFk_F, we introduce here a Skyrme--type functional that contains only ss-wave terms and provides, at the mean--field level, (i) a satisfactory equation of state for neutron matter from extremely low densities up to densities close to the equilibrium point, and (ii) a good--quality equation of state for symmetric matter at density scales around the saturation point. This is achieved by using a density--dependent neutron-neutron scattering length a(ρa(\rho) which satisfies the low--density limit (for Fermi momenta going to zero) and has a density dependence tuned in such a way that the low--density constraint a(ρ)kF1|a(\rho) k_F| \le 1 is satisfied at all density scales.Comment: 5 figure

    From dilute matter to the equilibrium point in the energy--density--functional theory

    Full text link
    Due to the large value of the scattering length in nuclear systems, standard density--functional theories based on effective interactions usually fail to reproduce the nuclear Fermi liquid behavior both at very low densities and close to equilibrium. Guided on one side by the success of the Skyrme density functional and, on the other side, by resummation techniques used in Effective Field Theories for systems with large scattering lengths, a new energy--density functional is proposed. This functional, adjusted on microscopic calculations, reproduces the nuclear equations of state of neutron and symmetric matter at various densities. Furthermore, it provides reasonable saturation properties as well as an appropriate density dependence for the symmetry energy.Comment: 4 figures, 2 table

    Voltage induced control and magnetoresistance of noncollinear frustrated magnets

    Full text link
    Noncollinear frustrated magnets are proposed as a new class of spintronic materials with high magnetoresistance which can be controlled with relatively small applied voltages. It is demonstrated that their magnetic configuration strongly depends on position of the Fermi energy and applied voltage. The voltage induced control of noncollinear frustrated materials (VCFM) can be seen as a way to intrinsic control of colossal magnetoresistance (CMR) and is the bulk material counterpart of spin transfer torque concept used to control giant magnetoresistance in layered spin-valve structures.Comment: 4 pages, 4 figure

    Ultrafast dynamics of finite Hubbard clusters - a stochastic mean-field approach

    Full text link
    Finite lattice models are a prototype for strongly correlated quantum systems and capture essential properties of condensed matter systems. With the dramatic progress in ultracold atoms in optical lattices, finite fermionic Hubbard systems have become directly accessible in experiments, including their ultrafast dynamics far from equilibrium. Here, we present a theoretical approach that is able to treat these dynamics in any dimension and fully includes inhomogeneity effects. The method consists in stochastic sampling of mean-field trajectories and is found to be more accurate and efficient than current nonequilibrium Green functions approaches. This is demonstrated for Hubbard clusters with up to 512 particles in one, two and three dimensions

    From bare interactions, low--energy constants and unitary gas to nuclear density functionals without free parameters: application to neutron matter

    Full text link
    We further progress along the line of Ref. [Phys. Rev. {\bf A 94}, 043614 (2016)] where a functional for Fermi systems with anomalously large ss-wave scattering length asa_s was proposed that has no free parameters. The functional is designed to correctly reproduce the unitary limit in Fermi gases together with the leading-order contributions in the s- and p-wave channels at low density. The functional is shown to be predictive up to densities 0.01\sim0.01 fm3^{-3} that is much higher densities compared to the Lee-Yang functional, valid for ρ<106\rho < 10^{-6} fm3^{-3}. The form of the functional retained in this work is further motivated. It is shown that the new functional corresponds to an expansion of the energy in (askF)(a_s k_F) and (rekF)(r_e k_F) to all orders, where rer_e is the effective range and kFk_F is the Fermi momentum. One conclusion from the present work is that, except in the extremely low--density regime, nuclear systems can be treated perturbatively in (askF)1-(a_s k_F)^{-1} with respect to the unitary limit. Starting from the functional, we introduce density--dependent scales and show that scales associated to the bare interaction are strongly renormalized by medium effects. As a consequence, some of the scales at play around saturation are dominated by the unitary gas properties and not directly to low-energy constants. For instance, we show that the scale in the s-wave channel around saturation is proportional to the so-called Bertsch parameter ξ0\xi_0 and becomes independent of asa_s. We also point out that these scales are of the same order of magnitude than those empirically obtained in the Skyrme energy density functional. We finally propose a slight modification of the functional such that it becomes accurate up to the saturation density ρ0.16\rho\simeq 0.16 fm3^{-3}

    Superfluid fission dynamics with microscopic approaches

    Full text link
    Recent progresses in the description of the latter stage of nuclear fission are reported. Dynamical effects during the descent of the potential towards scission and in the formation of the fission fragments are studied with the time-dependent Hartree-Fock approach with dynamical pairing correlations at the BCS level. In particular, this approach is used to compute the final kinetic energy of the fission fragments. Comparison with experimental data on the fission of 258Fm are made.Comment: Proceeding of the "International Conference on Nuclear Structure and Related Topics" (NSRT15
    corecore