14 research outputs found
Ultra-low phase noise all-optical microwave generation setup based on commercial devices
In this paper, we present a very simple design based on commercial devices
for the all-optical generation of ultra-low phase noise microwave signals. A
commercial, fibered femtosecond laser is locked to a laser that is stabilized
to a commercial ULE Fabry-Perot cavity. The 10 GHz microwave signal extracted
from the femtosecond laser output exhibits a single sideband phase noise
at 1 Hz Fourier frequency, at
the level of the best value obtained with such "microwave photonics" laboratory
experiments \cite{Fortier2011}. Close-to-the-carrier ultra-low phase noise
microwave signals will now be available in laboratories outside the frequency
metrology field, opening up new possibilities in various domains.Comment: 8 pages, 3 figures. To be published in Applied Optics, early posting
version available at
http://www.opticsinfobase.org/ao/upcoming_pdf.cfm?id=23114
Spin self-rephasing and very long coherence times in a trapped atomic ensemble
We perform Ramsey spectroscopy on the ground state of ultra-cold 87Rb atoms
magnetically trapped on a chip in the Knudsen regime. Field inhomogeneities
over the sample should limit the 1/e contrast decay time to about 3 s, while
decay times of 58 s are actually observed. We explain this surprising result by
a spin self-rephasing mechanism induced by the identical spin rotation effect
originating from particle indistinguishability. We propose a theory of this
synchronization mechanism and obtain good agreement with the experimental
observations. The effect is general and susceptible to appear in other physical
systems.Comment: Revised version; improved description of the theoretical treatmen
Demonstration of a state-insensitive, compensated nanofiber trap
We report the experimental realization of an optical trap that localizes single Cs atoms ≃ 215
nm from surface of a dielectric nanober. By operating at magic wavelengths for pairs of counterpropagating
red- and blue-detuned trapping beams, dierential scalar light shifts are eliminated, and
vector shifts are suppressed by ≈ 250. We thereby measure an absorption linewidth Γ/2π = 5.7 ± 0.1
MHz for the Cs 6S_(1/2), F = 4 → 6P_(3/2), F' = 5 transition, where Γ_0/2π = 5.2 MHz in free space.
Optical depth d ≃ 66 is observed, corresponding to an optical depth per atom d_1 ≃ 0.08. These
advances provide an important capability for the implementation of functional quantum optical
networks and precision atomic spectroscopy near dielectric surfaces
A state-insensitive, compensated nanofiber trap
Laser trapping and interfacing of laser-cooled atoms in an optical fiber
network is an important capability for quantum information science. Following
the pioneering work of Balykin et al. and Vetsch et al., we propose a robust
method of trapping single Cesium atoms with a two-color state-insensitive
evanescent wave around a dielectric nanofiber. Specifically, we show that
vector light shifts (i.e., effective inhomogeneous Zeeman broadening of the
ground states) induced by the inherent ellipticity of the forward-propagating
evanescent wave can be effectively canceled by a backward-propagating
evanescent wave. Furthermore, by operating the trapping lasers at the magic
wavelengths, we remove the differential scalar light shift between ground and
excited states, thereby allowing for resonant driving of the optical D2
transition. This scheme provides a promising approach to trap and probe neutral
atoms with long trap and coherence lifetimes with realistic experimental
parameters.Comment: 20 pages, 12 figure