4,455 research outputs found

    Spatially Resolved Mid-IR Imaging of the SR 21 Transition Disk

    Full text link
    We present mid-IR observations from Gemini/TReCS that spatially resolve the dust emission around SR 21. The protoplanetary disk around SR 21 is believed to have a cleared gap extending from stellocentric radii of ~0.5 AU to ~20 AU, based on modeling of the observed spectral energy distribution. Our new observations resolve the dust emission, and our data are inconsistent with the previous model. We require the disk to be completely cleared within ~10 AU, without the hot inner disk spanning ~0.25-0.5 AU posited previously. To fit the SED and mid-IR imaging data together, we propose a disk model with a large inner hole, but with a warm companion--possibly surrounded by circumstellar material of its own--residing near the outer edge of the cleared region. We also discuss a model with a narrow ring included in a large cleared inner disk region, and argue that it is difficult to reconcile with the data.Comment: 13 pages, including 3 figures. Accepted for publication by ApJ Letter

    Unveiling the near-infrared structure of the massive-young stellar object NGC 3603 IRS 9A with sparse aperture masking and spectroastrometry

    Full text link
    Contemporary theory holds that massive stars gather mass during their initial phases via accreting disk-like structures. However, conclusive evidence for disks has remained elusive for the most massive young objects. This is mainly due to significant observational challenges. Incisive studies, even targeting individual objects, are therefore relevant to the progression of the field. NGC 3603 IRS 9A* is a young massive stellar object still surrounded by an envelope of molecular gas. Previous mid-infrared observations with long-baseline interferometry provided evidence for a disk of 50 mas diameter at its core. This work aims at a comprehensive study of the physics and morphology of IRS 9A at near-infrared wavelengths. New sparse aperture masking interferometry data taken with NACO/VLT at Ks and Lp filters were obtained and analysed together with archival CRIRES spectra of the H2 and BrG lines. The calibrated visibilities recorded at Ks and Lp bands suggest the presence of a partially resolved compact object of 30 mas at the core of IRS 9A, together with the presence of over-resolved flux. The spectroastrometric signal of the H2 line shows that this spectral feature proceeds from the large scale extended emission (300 mas) of IRS 9A, while the BrG line appears to be formed at the core of the object (20 mas). This scenario is consistent with the brightness distribution of the source for near- and mid-infrared wavelengths at various spatial scales. However, our model suffers from remaining inconsistencies between SED modelling and the interferometric data. Moreover, the BrG spectroastrometric signal indicates that the core of IRS 9A exhibits some form of complexity such as asymmetries in the disk. Future high-resolution observations are required to confirm the disk/envelope model and to flesh out the details of the physical form of the inner regions of IRS 9A.Comment: Accepted to be published in Astronomy & Astrophysics, 13 pages, 14 figure

    Characterization of integrated optics components for the second generation of VLTI instruments

    Full text link
    Two of the three instruments proposed to ESO for the second generation instrumentation of the VLTI would use integrated optics for beam combination. Several design are studied, including co-axial and multi-axial recombination. An extensive quantity of combiners are therefore under test in our laboratories. We will present the various components, and the method used to validate and compare the different combiners. Finally, we will discuss the performances and their implication for both VSI and Gravity VLTI instruments.Comment: SPIE Astronomical Instrumentation 2008 in Marseille, France -- Equation (7) update

    Starlight Demonstration of the Dragonfly Instrument: an Integrated Photonic Pupil Remapping Interferometer for High Contrast Imaging

    Full text link
    In the two decades since the first extra-solar planet was discovered, the detection and characterization of extra-solar planets has become one of the key endeavors in all of modern science. Recently direct detection techniques such as interferometry or coronography have received growing attention because they reveal the population of exoplanets inaccessible to Doppler or transit techniques, and moreover they allow the faint signal from the planet itself to be investigated. Next-generation stellar interferometers are increasingly incorporating photonic technologies due to the increase in fidelity of the data generated. Here, we report the design, construction and commissioning of a new high contrast imager; the integrated pupil-remapping interferometer; an instrument we expect will find application in the detection of young faint companions in the nearest star-forming regions. The laboratory characterisation of the instrument demonstrated high visibility fringes on all interferometer baselines in addition to stable closure phase signals. We also report the first successful on-sky experiments with the prototype instrument at the 3.9-m Anglo-Australian Telescope. Performance metrics recovered were consistent with ideal device behaviour after accounting for expected levels of decoherence and signal loss from the uncompensated seeing. The prospect of complete Fourier-coverage coupled with the current performance metrics means that this photonically-enhanced instrument is well positioned to contribute to the science of high contrast companions.Comment: 10 pages, 7 figures, accepted to Mon. Not. of Roy. Ast. Soc., 201

    CalFUSE v3: A Data-Reduction Pipeline for the Far Ultraviolet Spectroscopic Explorer

    Full text link
    Since its launch in 1999, the Far Ultraviolet Spectroscopic Explorer (FUSE) has made over 4600 observations of some 2500 individual targets. The data are reduced by the Principal Investigator team at the Johns Hopkins University and archived at the Multimission Archive at Space Telescope (MAST). The data-reduction software package, called CalFUSE, has evolved considerably over the lifetime of the mission. The entire FUSE data set has recently been reprocessed with CalFUSE v3.2, the latest version of this software. This paper describes CalFUSE v3.2, the instrument calibrations upon which it is based, and the format of the resulting calibrated data files.Comment: To appear in PASP; 29 pages, 13 figures, uses aastex, emulateap

    Imaging the spotty surface of Betelgeuse in the H band

    Full text link
    This paper reports on H-band interferometric observations of Betelgeuse made at the three-telescope interferometer IOTA. We image Betelgeuse and its asymmetries to understand the spatial variation of the photosphere, including its diameter, limb darkening, effective temperature, surrounding brightness, and bright (or dark) star spots. We used different theoretical simulations of the photosphere and dusty environment to model the visibility data. We made images with parametric modeling and two image reconstruction algorithms: MIRA and WISARD. We measure an average limb-darkened diameter of 44.28 +/- 0.15 mas with linear and quadratic models and a Rosseland diameter of 45.03 +/- 0.12 mas with a MARCS model. These measurements lead us to derive an updated effective temperature of 3600 +/- 66 K. We detect a fully-resolved environment to which the silicate dust shell is likely to contribute. By using two imaging reconstruction algorithms, we unveiled two bright spots on the surface of Betelgeuse. One spot has a diameter of about 11 mas and accounts for about 8.5% of the total flux. The second one is unresolved (diameter < 9 mas) with 4.5% of the total flux. Resolved images of Betelgeuse in the H band are asymmetric at the level of a few percent. The MOLsphere is not detected in this wavelength range. The amount of measured limb-darkening is in good agreement with model predictions. The two spots imaged at the surface of the star are potential signatures of convective cells.Comment: 10 pages, 10 figures, accepted for publication in A&A, references adde

    Planet Formation Imager (PFI): Introduction and Technical Considerations

    Get PDF
    Complex non-linear and dynamic processes lie at the heart of the planet formation process. Through numerical simulation and basic observational constraints, the basics of planet formation are now coming into focus. High resolution imaging at a range of wavelengths will give us a glimpse into the past of our own solar system and enable a robust theoretical framework for predicting planetary system architectures around a range of stars surrounded by disks with a diversity of initial conditions. Only long-baseline interferometry can provide the needed angular resolution and wavelength coverage to reach these goals and from here we launch our planning efforts. The aim of the "Planet Formation Imager" (PFI) project is to develop the roadmap for the construction of a new near-/mid-infrared interferometric facility that will be optimized to unmask all the major stages of planet formation, from initial dust coagulation, gap formation, evolution of transition disks, mass accretion onto planetary embryos, and eventual disk dispersal. PFI will be able to detect the emission of the cooling, newly-formed planets themselves over the first 100 Myrs, opening up both spectral investigations and also providing a vibrant look into the early dynamical histories of planetary architectures. Here we introduce the Planet Formation Imager (PFI) Project (www.planetformationimager.org) and give initial thoughts on possible facility architectures and technical advances that will be needed to meet the challenging top-level science requirements.Comment: SPIE Astronomical Telescopes and Instrumentation conference, June 2014, Paper ID 9146-35, 10 pages, 2 Figure

    Southern Massive Stars at High Angular Resolution: Observational Campaign and Companion Detection

    Get PDF
    Multiplicity is one of the most fundamental observable properties of massive O-type stars and offers a promising way to discriminate between massive star formation theories. Nevertheless, companions at separations between 1 and 100 mas remain mostly unknown due to intrinsic observational limitations. [...] The Southern MAssive Stars at High angular resolution survey (SMASH+) was designed to fill this gap by providing the first systematic interferometric survey of Galactic massive stars. We observed 117 O-type stars with VLTI/PIONIER and 162 O-type stars with NACO/SAM, respectively probing the separation ranges 1-45 and 30-250mas and brightness contrasts of Delta H < 4 and Delta H < 5. Taking advantage of NACO's field-of-view, we further uniformly searched for visual companions in an 8''-radius down to Delta H = 8. This paper describes the observations and data analysis, reports the discovery of almost 200 new companions in the separation range from 1mas to 8'' and presents the catalog of detections, including the first resolved measurements of over a dozen known long-period spectroscopic binaries. Excluding known runaway stars for which no companions are detected, 96 objects in our main sample (DEC < 0 deg; H<7.5) were observed both with PIONIER and NACO/SAM. The fraction of these stars with at least one resolved companion within 200mas is 0.53. Accounting for known but unresolved spectroscopic or eclipsing companions, the multiplicity fraction at separation < 8'' increases to f_m = 0.91 +/- 0.03. The fraction of luminosity class V stars that have a bound companion reaches 100% at 30mas while their average number of physically connected companions within 8'' is f_c = 2.2 +/- 0.3. This demonstrates that massive stars form nearly exclusively in multiple systems. Additionally, the nine non-thermal (NT) radio emitters observed by SMASH+ are all resolved [...]Comment: 57 pages, 20 figures, 7 tables; accepted for publication in ApJ

    Importance of the Saharan heat low in controlling the North Atlantic free tropospheric humidity budget deduced from IASI <i>δ</i>D observations

    Get PDF
    The isotopic composition of water vapour in the North Atlantic free troposphere is investigated with Infrared Atmospheric Sounding Interferometer (IASI) measurements of the D ∕ H ratio (δD) above the ocean. We show that in the vicinity of West Africa, the seasonality of δD is particularly strong (130 ‰), which is related with the influence of the Saharan heat low (SHL) during summertime. The SHL indeed largely influences the dynamic in that region by producing deep turbulent mixing layers, yielding a specific water vapour isotopic footprint. The influence of the SHL on the isotopic budget is analysed on various time and space scales and is shown to be large, highlighting the importance of the SHL dynamics on the moistening and the HDO enrichment of the free troposphere over the North Atlantic. The potential influence of the SHL is also investigated on the inter-annual scale as we also report important variations in δD above the Canary archipelago region. We interpret the variability in the enrichment, using backward trajectory analyses, in terms of the ratio of air masses coming from the North Atlantic and air masses coming from the African continent. Finally, the interest of IASI high sampling capabilities is further illustrated by presenting spatial distributions of δD and humidity above the North Atlantic from which we show that the different sources and dehydration pathways controlling the humidity can be disentangled thanks to the added value of δD observations. More generally, our results demonstrate the utility of δD observations obtained from the IASI sounder to gain insight into the hydrological cycle processes in the West African region
    corecore