10 research outputs found
Geodesic flows on Riemannian g.o. spaces
We prove the integrability of geodesic flows on the Riemannian g.o. spaces of
compact Lie groups, as well as on a related class of Riemannian homogeneous
spaces having an additional principal bundle structure.Comment: 12 pages, minor corrections, final versio
The Lagrange-D'Alembert-Poincaré equations and integrability for the Euler's disk
Nonholonomic systems are described by the Lagrange-D'Alembert's principle. The presence of symmetry leads, upon the choice of an arbitrary principal connection, to a reduced D'Alembert's principle and to the Lagrange-D'Alembert-Poincaré reduced equations. The case of rolling constraints has a long history and it has been the purpose of many works in recent times. In this paper we find reduced equations for the case of a thick disk rolling on a rough surface, sometimes called Euler's disk, using a 3-dimensional abelian group of symmetry. We also show how the reduced system can be transformed into a single second order equation, which is an hypergeometric equation.Fil: Cendra, Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Matemática; ArgentinaFil: Diaz, Viviana Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Matemática; Argentin