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Abstract—Nonholonomic systems are described by the Lagrange–D’Alembert’s principle.
The presence of symmetry leads, upon the choice of an arbitrary principal connection, to a reduced
D’Alembert’s principle and to the Lagrange–D’Alembert–Poincaré reduced equations. The case of
rolling constraints has a long history and it has been the purpose of many works in recent times.
In this paper we find reduced equations for the case of a thick disk rolling on a rough surface,
sometimes called Euler’s disk, using a 3-dimensional abelian group of symmetry. We also show
how the reduced system can be transformed into a single second order equation, which is an
hypergeometric equation.
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1. INTRODUCTION

The study of the motion of a disk rolling on a horizontal rough plane has been the purpose
of many works since at least the middle of the XIX century, as part of a more general study
of systems with rolling constraints, see for instance [1–27] for historical remarks concerning non-
holonomic systems and, in particular, the rolling disk. The recent literature on the rolling disk
includes important advances in the study of the dynamics from a qualitative point of view, see
for instance, [5, 12, 15]. In [5, 28] a qualitative analysis of the motion of the point of contact
of the disk with the plane is done, including a computer analysis of the trajectories. In some
of the previous works a reduction by a 4-dimensional group of symmetry is performed. In [7]
a 3-dimensional abelian group of symmetry is used to reduce the planar disk and the geometric aspects
of the problem are emphasized by using a reduced D’Alembert’s principle and obtaining Lagrange–
D’Alembert–Poincaré reduced equations, see [8] for the general theory of Lagrange–D’Alembert–
Poincaré equations. As a consequence, equations of motion in terms of variables which include Euler’s
angles are naturally obtained.

The present paper generalizes [7] in the sense that we carry out a similar program, but this time
for the so called Euler’s disk. This is a thick disk, that is, a cylinder, rolling without sliding on its
rim on a horizontal rough plane. It is assumed that there is only one point of contact between the
disk and the plane, in other words, we study only the part of the motion satisfying this condition,
and chose the configuration space accordingly. However, the equations of motion are analytic and
can be extended naturally to a bigger manifold which includes the vertical position, with no physical
meaning. The distribution of mass of the disk is assumed to have circular symmetry with respect to
the axis perpendicular to the disk and passing through the center, which is assumed to coincide with
the center of mass, so two of the three principal moments of inertia are equal. The case of a planar
disk is the case of zero thickness, studied in [7]. Equations of motion for this system in terms of
Euler’s angles have been written in [15], using balance of momentum arguments and mentioning
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previous results on integrability due to Appell [29, 30]. While it is perhaps in some aspects easier
to work with a system reduced by a 4-dimensional group of symmetry, it is also of interest to have
reduced equations of motion which involve more variables. The main point of the present paper is that
we apply the geometrically inspired method described in [8], which involves reducing D’Alembert’s
principle rather than using balance of momentum, to obtain the reduced Lagrange–D’Alembert–
Poincaré equations (Eqs. (1)–(4) in Section 2), using a 3-dimensional group of symmetry. We also
derive an hypergeometric equation involving some of the variables. One advantage of this approach is
that it opens the door for the application of new ideas in numerical analysis that explicitly make use of
the D’Alembertian approach, [31, 32] and references therein. By further transforming the Lagrange–
D’Alembert–Poincaré equations we obtain eight explicit equations of motion in terms of our variables.
The first six of those equations, or equivalently Eqs. (13)–(16), are consistent with the four equations
obtained in [15] (equations (5.3) of [15]); while the last two of them give the acceleration of the
point of contact between the disk and the plane. In [15] also equations for the sliding disk were
obtained.

Although in the present paper we only consider the idealized model of the Euler’s disk described
above, we must at least mention that different types of dissipative phenomena have been recently studied
both from a theoretical and also an experimental perspective, see for instance [15, 22, 33–37]. Having
general equations for the idealized model of the Euler’s disk is a starting point to understand more
realistic models which include dissipation.

In Section 2, we apply the techniques of reduction given in [8] to describe the Lagrange–d’Al-
embert–Poincaré equations for the example of the Euler’s disk and reduce it to an hypergeometric
equation.

2. THE MOTION OF THE EULER’S DISK

2.1. Kinematics of the Rigid Body

The configuration space for the rigid body is the group SO(3), see for instance [38, 39]. The motion of
the rigid body is given by a curve A(t) on SO(3). The spatial angular velocity ω̂ and the body angular
velocity Ω̂ are elements of the Lie algebra so(3) and they are defined by the conditions Ȧ = A Ω̂ = ω̂ A.

We recall that there is a natural identification :̂ R
3 → so(3) given by

x̂ =

⎛
⎜⎜⎜⎝

0 −x3 x2

x3 0 −x1

−x2 x1 0

⎞
⎟⎟⎟⎠,

where x = x1 e1 + x2 e2 + x3 e3.
We have the well known formulas

x̂ × y = [x̂, ŷ], x · y = −1
2
trx̂ŷ and x̂ y = x × y.

Besides, if A is any element of SO(3) and x is any element of R
3 we have

Â x = Ax̂A−1.

For any motion A(t), define z(t) = A(t) e3. Then

ż = Ȧ e3 = ω̂z = ω × z.

We have that 〈ω, z〉 = 〈Ω, e3〉 = Ω3, and that A(Ω1ê1 + Ω2ê2)A−1 = ̂(z × ż). The spatial velocity ω
can be written ω = AΩ and then ω = Ω3 z + z × ż. This gives a decomposition of ω as a sum of its
component parallel to z plus its component normal to z.

Now we are going to apply the reduction theory described in Ref. [8] to the Euler’s disk. See also
appendix in Ref. [7].
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2.2. Kinematics of the Euler’s Disk

Let us consider an Euler’s disk of radius r and thickness re rolling on a rough horizontal plane and
having only one point of contact with it, as described in the introduction. We choose a fixed reference
frame (e1, e2, e3) such that the axis e3 is directed upwards and the axis e1 and e2 lie on the horizontal
plane, as indicated in the figure below. For each A ∈ SO(3) the ortonormal frame (Ae1, Ae2, Ae3) is
rigidly attached to the side of the disk on which the point of contact with the surface lies and has its
origin at the center of this side, in such a way that the axis z = Ae3 is directed to the other side. The
point of contact of the disk with the plane is x = x1e1 + x2e2 = (x1, x2, 0).

Euler’s disk.

We are interested only in the motion of the disk satisfying the condition 0 < 〈A(t)e3, e3〉 < 1. Then,
the configuration space for the Euler’s disk is

Q =
(
0,

π

2

)
× S1 × S1 × R

2,

and a point q ∈ Q is written as q = (θ, ϕ, ψ, x), where the meaning of the variables θ, ϕ, ψ is the
following. The angle θ is the angle from the axis e3 to the vector z = Ae3. The vector y is the unit vector
directed from the point of contact with the plane to the origin of the system (Ae1, Ae2, Ae3). The vector
u is defined by u = z × y, so u is tangent to the disk at the point of contact x and has the direction of the
motion of this point on the plane. The unit vector u has the expression u = (− cos ϕ,− sin ϕ, 0) which
defines the angle ϕ. The angle ψ is the angle from the vector −y to the vector Ae1 where the positive
sense for measuring the angle ψ on the plane of the disk is the counterclockwise sense, as viewed from z.

We have the vector z = Ae3 where the matrix A is

A =

⎛
⎜⎜⎜⎝

− cos θ cos ψ sin ϕ − cos ϕ sin ψ cos θ sinψ sin ϕ − cos ϕ cos ψ sin θ sin ϕ

cos θ cos ψ cos ϕ − sin ϕ sin ψ − cos θ sin ψ cos ϕ − cos ψ sin ϕ − sin θ cos ϕ

sin θ cos ψ − sin θ sin ψ cos θ

⎞
⎟⎟⎟⎠.

We are going to assume that the initial position of the disk corresponds to the disk lying on the plane
with the vector z directed upwards, in which case we have θ = 0, ϕ = π/2, ψ = π and x = (r, 0, 0).

Notice that in this case we have A =

⎛
⎜⎜⎜⎝

1 0 0

0 1 0

0 0 1

⎞
⎟⎟⎟⎠.
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The spatial angular velocity ω and the body angular velocity Ω, given by the formulas ω̂ = ȦA−1

and Ω̂ = A−1Ȧ, and the identification :̂ R
3 → so(3), are

ω = (θ̇ cos ϕ + ψ̇ sin θ sinϕ, θ̇ sinϕ − ψ̇ cos ϕ sin θ, ϕ̇ + ψ̇ cos θ)

and

Ω = (−θ̇ sin ψ + ϕ̇ cos ψ sin θ,−θ̇ cos ψ − ϕ̇ sin θ sin ψ, ϕ̇ cos θ + ψ̇).

The nonholonomic constraint is given by the distribution

D(θ,ϕ,ψ,x) =
{

(θ, ϕ, ψ, x, θ̇, ϕ̇, ψ̇, ẋ)|ẋ = ψ̇ru
}

.

The symmetry group is G = SO(2)×R
2, where the group SO(2) is identified with the set of elements

of SO(3) of the type
⎛
⎜⎜⎜⎝

cos α − sinα 0

sinα cos α 0

0 0 1

⎞
⎟⎟⎟⎠,

and the factor R
2 is identified with the subspace of R

3 defined by x3 = 0.
The group SO(2) × R

2 acts on the right on Q by the action

(θ, ϕ, ψ, x)(α, a) = (θ, ϕ, ψ + α, x + a),

where the sum ψ + α is defined modulo 2π. With this action Q becomes a right principal bundle with
structure group SO(2) × R

2. The map π : Q → C, where C = (0, π/2) × S1, given by π(θ, ϕ, ψ, x) =
(θ, ϕ) is a submersion and we have an identification Q/

(
SO(2) × R

2
)
≡ C given by

[(θ, ϕ, ψ, x)]SO(2)×R2 ≡ (θ, ϕ).

The vertical distribution V is given by

V(θ,ϕ,ψ,x) =
{

(θ, ϕ, ψ, x, θ̇, ϕ̇, ψ̇, ẋ)|θ̇ = 0, ϕ̇ = 0
}

.

The vector bundle S = D ∩ V is given by

S(θ,ϕ,ψ,x) = {(θ, ϕ, ψ, x, 0, 0, ξ, ξru)} .

Since dimD(θ,ϕ,ψ,x) = 3, dimV(θ,ϕ,ψ,x) = 3 and dimS(θ,ϕ,ψ,x) = 1, we have

D(θ,ϕ,ψ,x) + V(θ,ϕ,ψ,x) = T(θ,ϕ,ψ,x)Q

that is, the dimension assumption (see appendix in Ref. [7]) is satisfied.
We choose the horizontal spaces

H(θ,ϕ,ψ,x) = {(θ, ϕ, ψ, x, α, β, 0, 0)}

satisfying

H(θ,ϕ,ψ,x) ⊕ S(θ,ϕ,ψ,x) = D(θ,ϕ,ψ,x).

It is also clear that the distribution H is SO(2) × R
2-invariant. The connection 1-form A whose

horizontal spaces are H(θ,ϕ,ψ,x) is

A(θ, ϕ, ψ, x, θ̇, ϕ̇, ψ̇, ẋ) = (ψ̇, ẋ).
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The adjoint bundle ˜so(2) × R2 is a trivial bundle and we have an identification

˜so(2) × R2 ≡ C × (so(2) × R
2)

given by

[(θ, ϕ, ψ, x, 0, 0, ξ, a)]SO(2)×R2 ≡ (θ, ϕ, ξ, a).

The vector bundle isomorphism

αA : TQ/G → T (Q/G) ⊕ g̃,

is described as follows.
Since G is abelian and Q/

(
SO(2) × R

2
)
≡ C we obtain g̃ ≡ C ×

(
so(2) × R

2
)

and

TC ⊕ g̃ ≡ C × R
2 ⊕ C ×

(
so(2) × R

2
)
≡ C × R

2 ⊕
(
so(2) × R

2
)
.

Then

αA
(
[(θ, ϕ, ψ, x, θ̇, ϕ̇, ψ̇, ẋ)]SO(2)×R2

)
= (θ, ϕ, θ̇, ϕ̇) ⊕ (θ, ϕ, ψ̇, ẋ).

The subbundle s̃ ⊂ ˜so(2) × R2 is given by

s̃ = {(θ, ϕ, 0, 0) ⊕ (θ, ϕ, ξ, ξru)}.

About the structure of the bundle ˜so(2) × R2 we have, since the Lie algebra so(2) × R
2 is abelian,

that the Lie algebra structure on each fiber of ˜so(2) × R2 is abelian.

Let (θ, ϕ, ξ, a) be a curve on ˜so(2) × R2. Since the group SO(2) × R
2 is abelian using the formula in

appendix in Ref. [7] for the covariant derivative, we have

D(θ, ϕ, ξ, a)
Dt

= (θ, ϕ, ξ̇, ȧ).

The g̃-valued 2-form B̃ is equal to zero because the distribution of horizontal spaces is integrable.

2.3. Dynamical Equations for the Euler’s Disk
As we have explained in the introduction, the center of mass of the Euler’s disk coincides with the

geometric center of the disk, its moments of inertia with respect to the axis that are parallel to Ae1

and Ae2 and pass through the center of mass are equal, say I1 = I2. The moment of inertia I3 with
respect to the axis z = Ae3 is arbitrary.

Let w = x + ry and let w̃ = x + rỹ be the center of mass, where ỹ = y + (1/2)ez and y = u × z.
Then the Lagrangian L : TQ→R for such a system, given by the kinetic minus the potential energy, is

L =
1
2
I1ż

2 +
1
2
I3(Ω3)2 +

1
2
M ˙̃w2 − Mgw̃3

=
1
2
I1ż

2 +
1
2
I3(Ω3)2 +

1
2
Mẇ2 − Mgry3 +

1
2
Mre〈ẇ, ż〉 +

1
8
Mr2e2ż2 − 1

2
Mgrez3,

where g is the acceleration of gravity and M is the mass of the disk.
This Lagrangian may be written as

L(θ, ϕ, ψ, x, θ̇, ϕ̇, ψ̇, ẋ) = −Mgr sin θ +
1
2

(
I1 +

1
4
Mr2e2

)
(θ̇2 + ϕ̇2 sin2 θ) +

1
2
Mẋ2 +

1
2
Mr2θ̇2

+
1
2
Mr2ϕ̇2 cos2 θ + Mrẋ1(θ̇ sin θ sin ϕ − ϕ̇ cos θ cos ϕ) − Mrẋ2(θ̇ cos ϕ sin θ + ϕ̇ cos θ sin ϕ)

+
1
2
I3(ϕ̇ cos θ + ψ̇)2 +

1
2
Mre

[
ẋ1(ϕ̇ cos ϕ sin θ + θ̇ sin ϕ cos θ)

+ ẋ2(ϕ̇ sin ϕ sin θ − θ̇ cos θ cos ϕ) − ϕ̇2r cos θ sin θ
]
− 1

2
Mgre cos θ.
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The Lagrangian L and the constraint D are invariant under the right action of the 3-dimensional
abelian group SO(2) × R

2.

Using the isomorphism

αA
(
[(θ, ϕ, ψ, x, θ̇, ϕ̇, ψ̇, ẋ)]SO(2)×R2

)
= (θ, ϕ, θ̇, ϕ̇) ⊕ (θ, ϕ, v)

where v̄ = (v0, v1) = (ψ̇, ẋ), the reduced Lagrangian 
(θ, ϕ, θ̇, ϕ̇, v̄) is given by


(θ, ϕ, θ̇, ϕ̇, v̄) = −Mgr sin θ +
1
2

(
I1 +

1
4
Mr2e2

)
(θ̇2 + ϕ̇2 sin2 θ) +

1
2
Mv1

2 +
1
2
Mr2θ̇2

+
1
2
Mr2ϕ̇2 cos2 θ + Mrv11(θ̇ sin θ sin ϕ − ϕ̇ cos θ cos ϕ) − Mrv12(θ̇ cos ϕ sin θ + ϕ̇ cos θ sin ϕ)

+
1
2
I3(ϕ̇ cos θ + v0)2 +

1
2
Mre

[
v11(ϕ̇ cos ϕ sin θ + θ̇ sin ϕ cos θ)

+ v12(ϕ̇ sinϕ sin θ − θ̇ cos θ cos ϕ) − r cos θ sin θϕ̇2
]
− 1

2
Mgre cos θ.

Now we shall write the Lagrange–D’Alembert–Poincaré equations. Since the procedure is similar
to the one explained in [7] we shall omit some technical details.

Since the group is abelian the vertical Lagrange–D’Alembert–Poincaré equations become

D

Dt

∂


∂v̄

∣∣∣∣
s̃

= 0.

Since (θ, ϕ, v̄) ∈ s̃ we have v1 = v0ru. A generator of s̃ is

(θ, ϕ, 1, ru),

and we have

d

dt

∂


∂v̄
(θ, ϕ, 1, ru) =I3(v̇0 + ϕ̈ cos θ − θ̇ϕ̇ sin θ) + Mr2(−2θ̇ϕ̇ sin θ + ϕ̈ cos θ)

+ Mr〈v̇1, u〉 −
1
2
Mer2(2θ̇ϕ̇ cos θ + ϕ̈ sin θ).

Since the covariant derivative coincides with the ordinary derivative in this case, we have the following
vertical Lagrange–D’Alembert–Poincaré equation (see [7] for details)

I3(v̇0+ϕ̈ cos θ−θ̇ϕ̇ sin θ)+Mr〈v̇1, u〉+Mr2(ϕ̈ cos θ−2θ̇ϕ̇ sin θ)− 1
2
Mer2(ϕ̈ sin θ+2θ̇ϕ̇ cos θ) = 0.

The reduced nonholonomic restriction is

v0ru = v1.

Similarly, we can calculate the horizontal Lagrange–D’Alembert–Poincaré equations
(

∂C


∂θ
− D

Dt

∂


∂θ̇

)
.δθ =

∂


∂v̄

(
B̃(θ̇, δθ)

)
= 0

and (
∂C


∂ϕ
− D

Dt

∂


∂ϕ̇

)
.δϕ =

∂


∂v̄

(
B̃(ϕ̇, δϕ)

)
= 0.
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Proceeding as in [7] we obtain the horizontal Lagrange–D’Alembert–Poincaré equations as
follows

2(Mr2 + I3 − I1)θ̇ϕ̇ sin θ cos θ − (I1 sin2 θ + (I3 + Mr2) cos2 θ)ϕ̈

+Mr cos θ( ˙v11 cos ϕ + ˙v12 sin ϕ) + I3(θ̇v0 sin θ − v̇0 cos θ)

−1
2
Mre

(1
2
re(2θ̇ϕ̇ sin θ cos θ + ϕ̈ sin2 θ)

+ sin θ( ˙v11 cos ϕ + ˙v12 sinϕ) + 2rθ̇ϕ̇(sin2 θ − cos2 θ) − 2rϕ̈ sin θ cos θ
)

= 0,

(I1 − I3 − Mr2)ϕ̇2 sin θ cos θ − I3v0ϕ̇ sin θ − (I1 + Mr2)θ̈

+Mr sin θ( ˙v12 cos ϕ − ˙v11 sin ϕ)

−Mgr cos θ +
1
2
Mre

(1
2
reϕ̇2 sin θ cos θ + rϕ̇2(sin2 θ − cos2 θ)

+ cos θ( ˙v12 cos ϕ − ˙v11 sinϕ) + g sin θ − 1
2
reθ̈

)
= 0.

So we have the following system of reduced equations for the Euler’s disk

I3(v̇0 + ϕ̈ cos θ − θ̇ϕ̇ sin θ) + Mr〈v̇1, u〉 + Mr2(ϕ̈ cos θ − 2θ̇ϕ̇ sin θ)

−1
2
Mer2(ϕ̈ sin θ + 2θ̇ϕ̇ cos θ) = 0, (1)

v0ru = v1, (2)

2(Mr2 + I3 − I1)θ̇ϕ̇ sin θ cos θ − (I1 sin2 θ + (I3 + Mr2) cos2 θ)ϕ̈

+Mr cos θ( ˙v11 cos ϕ + ˙v12 sin ϕ) + I3(θ̇v0 sin θ − v̇0 cos θ)

−1
2
Mre

(
1
2
re(2θ̇ϕ̇ sin θ cos θ + ϕ̈ sin2 θ)

+ sin θ( ˙v11 cos ϕ + ˙v12 sin ϕ) + 2rθ̇ϕ̇(sin2 θ − cos2 θ)− 2rϕ̈ sin θ cos θ
)

= 0, (3)

(I1 − I3 − Mr2)ϕ̇2 sin θ cos θ − I3v0ϕ̇ sin θ − (I1 + Mr2)θ̈

+Mr sin θ( ˙v12 cos ϕ − ˙v11 sin ϕ) − Mgr cos θ +
1
2
Mre

(
1
2
reϕ̇2 sin θ cos θ

+ rϕ̇2(sin2 θ − cos2 θ) + cos θ( ˙v12 cos ϕ − ˙v11 sinϕ) + g sin θ − 1
2
reθ̈

)
= 0, (4)

where the two first equations are the vertical Lagrange–D’Alembert–Poincaré equation and the re-
duced nonholonomic restriction, and the two last equations are the horizontal Lagrange–D’Alembert–
Poincaré equations.

2.4. Explicit equations for the Euler’s disk.

Differentiating the constraint (Eq. (2)) and solving the system (1), (3)–(4) for (ȧ, ḃ, v̇0, ˙v11, ˙v12), we
have the following explicit equations for the Euler’s disk, where the two first equations define a and b.

θ̇ = a (5)

ϕ̇ = b (6)

ψ̇ = v0 (7)

ȧ =
1

4I1 + (4 + e2)Mr2

(
−2eb2Mr2 cos(2θ) + 2(Mgre − 2b(I3 + Mr2)v0) sin θ
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+ cos θ(−2Mr(2g + berv0) + b2(4I1 − 4I3 + (−4 + e2)Mr2) sin θ)
)
, (8)

ḃ = − 2a
4I1I3 + (4I1 + I3e2)Mr2

(
ebI3Mr2 + b(4I1(I3 + Mr2)

+I3(−2I3 + (−2 + e2)Mr2)) cot θ − 2I3(I3 + Mr2)v0 csc θ
)
, (9)

v̇0 =
1

8I1I3 + 2(4I1 + I3e2)Mr2

(
a csc θ

(
4b(3I1 − I3)I3 + b(16I1 + (−4 + 3e2)I3)Mr2

−8I3(I3 + Mr2)v0 cos θ + bI3(4I1 − 4I3 + (−4 + e2)Mr2) cos(2θ)

+4eI3Mr2(v0 + 2b cos θ) sin θ
))

, (10)

˙v11 =
1

4I1I3 + (4I1 + I3e2)Mr2

(
ar cos ϕ(−2I3Mr2e(v0 + 2b cos θ)

+4I3(I3 + Mr2)v0 cot θ − 2b(4I1(I3 + Mr2) + I3(−2I3 + (−2 + e2)Mr2)) csc θ

+I3b(4I1 − 4I3 + (−4 + e2)Mr2) sin θ) + br(4I1I3 + (4I1 + I3e
2)Mr2)v0 sinϕ

)
, (11)

˙v12 = − 1
8I1I3 + 2(4I1 + I3e2)Mr2

(
2br(4I1I3 + (4I1 + I3e

2)Mr2)v0 cos ϕ

+ar csc θ(4b(3I1 − I3)I3 + b(16I1 + (−4 + 3e2)I3)Mr2 − 8I3(I3 + Mr2)v0 cos θ

+bI3(4I1 − 4I3 + (−4 + e2)Mr2) cos(2θ) + 4I3eMr2(v0 + 2b cos θ) sin θ) sin ϕ
)
. (12)

The first six equations form an analytic ODE in the variables (θ, ϕ, ψ, a, b, v0). The last two equations
are the derivative of the rolling constraint with respect to time and give the acceleration of the point of
contact of the disk with the plane. For each initial condition compatible with the rolling constraint there
is uniqueness of solution of the system of eight equations.

2.5. An Hypergeometric Equation Relating θ and b

By introducing the derivative of the rolling constraint (2) in Eqs. (1), (3) and (4), we obtain the
following system of equations which is equivalent to the system (1)–(4) and, of course, also equivalent
to the system (5)–(12) for initial conditions satisfying the constraint Eq. (2):

v0ru = v1, (13)

(I3 + Mr2)v̇0 +
(

(I3 + Mr2) cos θ − 1
2
Mr2e sin θ

)
ϕ̈

−
(
(I3 + 2Mr2) sin θ + Mr2e cos θ

)
θ̇ϕ̇ = 0, (14)

2
((

Mr2 + I3 − I1 −
1
4
Mr2e2

)
sin θ cos θ − 1

2
Mr2e(sin2 θ − cos2 θ)

)
θ̇ϕ̇

−
(

I1 sin2 θ + (I3 + Mr2) cos2 θ +
1
4
Mr2e2 sin2 θ − Mr2e sin θ cos θ

)
ϕ̈

−
(

(I3 + Mr2) cos θ − 1
2
Mr2e sin θ

)
v̇0 + I3θ̇v0 sin θ = 0, (15)

((
I1 − I3 − Mr2 +

1
4
Mr2e2

)
sin θ cos θ +

1
2
Mr2e(sin2 θ − cos2 θ)

)
ϕ̇2

−
(

I1 + Mr2 +
1
4
Mr2e2

)
θ̈ − (I3 + Mr2)ϕ̇v0 sin θ − Mgr cos θ

−1
2
Mr2ev0ϕ̇ cos θ +

1
2
Mgre sin θ = 0. (16)
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By dividing by a = θ̇ Eqs. (14) and (15), we obtain the following system of two linear differential
equations in two variables b and v0 :

(β + 1)
dv0

dθ
+

(
(β + 1) cos θ − 1

2
e sin θ

)
db

dθ
− ((β + 2) sin θ + e cos θ)b = 0, (17)

(
(β + 1) cos θ − 1

2
e sin θ

)
dv0

dθ
+

(
α sin2 θ + (β + 1) cos2 θ +

1
4
e2 sin2 θ − e sin θ cos θ

)
db

dθ

−2
((

1 + β − α − 1
4
e2

)
sin θ cos θ − 1

2
e(sin2 θ − cos2 θ)

)
b − βv0 sin θ = 0, (18)

where α = I1
Mr2 and β = I3

Mr2 .

This system leads to a second order differential equation as follows. The system (17)–(18) can be
solved for db/dθ and dv0/dθ obtaining

db

dθ
=

((β + 2) sin θ + e cos θ)
(β + 1) cos θ − 1/2e sin θ

b +
β + 1

(β + 1) cos θ − 1/2e sin θ

dv0

dθ
, (19)

dv0

dθ
=

2
(
β − α + 1 − 1/4e2

)
sin θ cos θ − e(sin2 θ − cos2 θ)

(β + 1) cos θ − 1/2e sin θ
b

− α sin2 θ + (β + 1) cos2 θ + 1/4e2 sin2 θ − e sin θ cos θ

(β + 1) cos θ − 1/2e sin θ

db

dθ

+
β sin θ

(β + 1) cos θ − 1/2e sin θ
v0. (20)

Of course one can also obtain equations (19) and (20) from (8), (9) and (10).
Thinking of b and v0 as being functions of θ, we obtain from (19) and (20) the following second order

differential equation for b = b(θ):

b′′ = −3 cot θ b′ +
2((2 + e2)β + 4α(β + 1) + eβ cot θ)

βe2 + 4α(β + 1)
b. (21)

By setting u = cotgθ in Eq. (21) we obtain the equation

d2b

du2
− u

1 + u2

db

du
− 2((2 + e2)β + 4α(β + 1) + eβu)

βe2 + 4α(β + 1)
1

(1 + u2)2
b = 0.

With the change of variable z =
1 + iu

2
, the last equation becomes the equation

d2b

dz2
− 1 − 2z

2z(1 − z)
db

dz
+

γ + δ(1 − 2z)i
4z2(1 − z)2

b = 0, (22)

where

γ =
2(2 + e2)β + 8α(β + 1)

βe2 + 4α(β + 1)
and δ =

2βe

βe2 + 4α(β + 1)
.

Eq. (22) can be transformed (see [40]) in the following equation:

z2(z − 1)2
d2b

dz2
+ ((1 − a1 − a2)z(z − 1)2 + (1 − b1 − b2)z2(z − 1))

db

dz
+ (a1a2(1 − z) + b1b2z + c1c2z(z − 1))b = 0, (23)

where a1 = 3
4 +

√
9
16 − γ+δi

4 , a2 = 3
4 −

√
9
16 − γ+δi

4 , b1 = 3
4 +

√
9
16 − γ−δi

4 ,

b2 = 3
4 −

√
9
16 − γ−δi

4 , c1 = 0 y c2 = −2.
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This equation has the solutions b(z) = za1(1 − z)b1f(z), where f(z) = 2F1(a, b; c;x) or f(z) =
k x1−c

2F1(a + 1 − c, b + 1 − c; 2 − c;x) (being k a constant) are the hypergeometric functions that

satisfy the equation z(1 − z)
d2f

dz2
+ (c − (a + b + 1)z)

df

dz
− abf = 0 where a = a1 + b1 + c1, b = a1 +

b1 + c2 y c = 1 + a1 − a2.

This equation is also valid for the planar disk, which corresponds to the case δ = 0.

Erratum: If we make in (21) the change of variable z = tan(θ/2) we obtain the following Heun’s
equation

b′′ +
3 − u2

u(1 + u2)
b′ − 4γu − 2δu2 + 2δ

u(1 + u2)2
b = 0. (24)

The Frobenius expansions of the linearly independent solutions of Eq. (24) are

b1(u) = a0

(
1 +

2
3

δ u +
(

1
2

γ +
1
6

δ2

)
u2 +

(
−2

9
δ +

11
45

γ δ +
1
45

δ3

)
u3 + . . .

)

and

b2(u) =Ca0

(
1 +

2
3

δ u +
(

1
2

γ +
1
6

δ2

)
u2 +

(
−2

9
δ +

11
45

γ δ +
1
45

δ3

)
u3 + ...

)
ln(u)+

+
C a0

2(γ − 2 − δ2)
1
u2

− C a0 δ

γ − 2 − δ2

1
u

+ c2 +
(

2
3

δ c2 −
C a0 δ(20γ − 19 − 8δ2)

9(γ − 2 − δ2)

)
u+

+
(
−3

8
C a0

(
γ +

1
3
δ2

)
+

1
2

(
γ +

1
3

δ2

)
c2 −

C a0(9 − 14 δ2 + 10 δ2 γ − 4 δ4)
18(γ − 2 − δ2)

)
u2 + . . .

For zero thickness we have δ = 0 and we obtain the corresponding Frobenius solution for the planar
disk. We must say that there is an obvious mistake in our Frobenius solutions for the planar disk in [7].
This does not affects the main results in that paper.

3. CONCLUSION

We have written the Lagrange–D’Alembert–Poincaré equations for the Euler’s disk. These equa-
tions are consistent with equations obtained previously by other authors. One advantage of having
Lagrange–D’Alembert–Poincaré equations is that it opens the door to apply numerical integrators
specially designed for nonholonomic systems. We also find an hypergeometric equation relating two
of the variables.
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26. Schneider, D., Nonholonomic Euler–Poincaré Equation and Stability in Chaplygin’s Sphere, PhD

Thesis, University of Washington, 2000.
27. Whittaker, E.T., Treatise on the Analytical Dynamics of Particles and Rigid Bodies, New York: Cam-

bridge University Press, 4th ed., 1959.
28. Moschuk, N.K., Qualitative Analysis of Motion of Heavy Rigid Body of Rotation on Absolutely Rough Plain,

Prikl. Mat. Mekh., 1988, vol. 52, no. 2, pp. 159–165.
29. Appell, P., Sur l’integration des equations du mouvement d’un corps pesant de revolution roulant par une

arete circulaire sur un plan horizontal; cas particulier du cerceau, Rend. Circ. Mat. Palermo, 1900, vol. 14,
pp. 1–6.

30. Korteweg, D.J., Extrait d’une lettre a M. Appell, Rend. Circ. Mat. Palermo, 1900, vol. 14, pp. 7–8.
31. Cortés Monforte, J., Geometric, Control and Numerical Aspects of Nonholonomic Systems, vol. 1793 of

Lecture Notes in Mathematics, Berlin: Springer-Verlag, 2002.
32. de León, M., Martı́n de Diego, D. and Santamaria-Merino, A., Geometric Integrators and Nonholonomic

Mechanics, J. Math. Phys., 2004, vol. 45, no. 3, pp. 1042–1064.
33. Bildsten, L., Viscous Dissipation for Euler Disk, Phys. Rev. E, 2002, vol. 66, no. 4, 056309, 2 pp.
34. Caps, H., Dorbolo, S., Ponte, S., Croisier, H. and Vandewalle, N., Rolling and Slipping Motion of Euler’s

Disk, Phys. Rev. E, 2004, vol. 69, no. 5, 056610, 6 pp.

REGULAR AND CHAOTIC DYNAMICS Vol. 12 No. 1 2007



THE LAGRANGE–D’ALEMBERT–POINCARÉ EQUATIONS AND INTEGRABILITY 67
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