5 research outputs found

    The relationships between volcanism, tectonism, and hydrothermal activity on the southern equatorial Mid-Atlantic Ridge

    No full text
    The Mid-Atlantic Ridge south of the equator is a key region for many aspects of spreading axis studies, from biogeography to ridge-hotspot interaction. Despite this, the ridge axis had, until 2004, seen little systematic study. Repeated trips to the area since then have mapped and explored some 900 km of ridge length, from 2° to 14°S. The result is complete bathymetric and side-scan coverage of the axial region and the discovery and characterization of the first hydrothermal vents south of the equator. Such multisegment detailed and interdisciplinary coverage allows us to formulate a general model for the interplay between volcanism, tectonics, and hydrothermalism on a slow spreading ridge. The model defines three basic types of ridge morphology with specific hydrothermal characteristics: (a) a deep, tectonically dominated rift valley where hydrothermalism is seldom associated with volcanism and much more likely confined to long-lived bounding faults; (b) a shallower, segment-center bulge where a combination of repeated magmatic activity and tectonism results in repeated, possibly temporally overlapping periods of hydrothermal activity on the ridge axis; and (c) a very shallow axis beneath which temperatures in all but the uppermost crust are so high that deformation is ductile, inhibiting the formation of high-porosity deep fractures and severely depressing hydrothermal circulation. This model is used together with satellitederived predicted bathymetry to provide forecasts of the best places to look for hydrothermal sites in the remaining unexplored regions of the South Atlantic

    Der mittelozeanische Ruecken: Teilprojekt A: Sedimenteintrag und Sedimenttransport entlang divergierender Plattengrenzen (Nordatlantik) Abschlussbericht

    No full text
    SIGLEAvailable from TIB Hannover: F97B1540+a / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekBundesministerium fuer Bildung, Wissenschaft, Forschung und Technologie, Bonn (Germany)DEGerman

    The deep structure of a sea-floor hydrothermal deposit

    No full text
    Hydrothermal circulation at the crests of mid-ocean ridges plays an important role in transferring heat from the interior of the Earth1, 2, 3. A consequence of this hydrothermal circulation is the formation of metallic ore bodies known as volcanic-associated massive sulphide deposits. Such deposits, preserved on land, were important sources of copper for ancient civilizations and continue to provide a significant source of base metals (for example, copper and zinc)4, 5, 6. Here we present results from Ocean Drilling Program Leg 169, which drilled through a massive sulphide deposit on the northern Juan de Fuca spreading centre and penetrated the hydrothermal feeder zone through which the metal-rich fluids reached the sea floor. We found that the style of feeder-zone mineralization changes with depth in response to changes in the pore pressure of the hydrothermal fluids and discovered a stratified zone of high-grade copper-rich replacement mineralization below the massive sulphide deposit. This copper-rich zone represents a type of mineralization not previously observed below sea-floor deposits, and may provide new targets for land-based mineral exploration
    corecore