5 research outputs found

    Clustering in ferronematics : The effect of magnetic collective ordering

    Get PDF
    Clustering of magnetic nanoparticles can dramatically change their collective magnetic properties, and it consequently may influence their performance in biomedical and technological applications. Owing to tailored surface modification of magnetic particles such composites represent stable systems. Here, we report ferronematic mixtures that contain anisotropic clusters of mesogen-hybridized cobalt ferrite nanoparticles dispersed in liquid crystal host studied by different experimental methods—magnetization measurements, small-angle X-ray scattering (SAXS), small-angle neutron scattering (SANS), and capacitance measurements. These measurements reveal non-monotonic dependencies of magnetization curves and the Fréedericksz transition on the magnetic nanoparticles concentration. This can be explained by the formation of clusters, whose structures were determined by SAXS measurements. Complementary to the magnetization measurements, SANS measurements of the samples were performed for different magnetic field strengths to obtain information on the orientation of the liquid crystal molecules. We demonstrated that such hybrid materials offer new avenues for tunable materials

    Comparison of dietary oils with different polyunsaturated fatty acid n-3 and n-6 content in the rat model of cutaneous wound healing

    Get PDF
    Dietary supplementation with polyunsaturated fatty acids (PUFA) n-3 can affect cutaneous wound healing; however, recent findings demonstrate the variable extent of their influence on the quality of healing. Here, we compare the effect of several dietary oils, containing different levels of PUFA n-3 and PUFA n-6, on wound healing in the rat model. Rats were fed the feed mixture with 8% palm oil (P), safflower oil (S), fish oil (F) or Schizochytrium microalga extract (Sch) and compared to the animals fed by control feed mixture (C). Dorsal full-thickness cutaneous excisions were performed after 52 days of feeding and skin was left to heal for an additional 12 days. Histopathological analysis of skin wounds was performed, including immune cells immunolabeling and the determination of hydroxyproline amount as well as gene expression analyses of molecules contributing to different steps of the healing. Matrix-assisted-laser-desorption-ionization mass-spectrometry-imaging (MALDI-MSI) was used to determine the amount of collagen alpha-1(III) chain fragment in healing samples. Treatment by Schizochytrium extract resulted in decrease in the total wound area, in contrast to the safflower oil group where the size of the wound was larger when comparing to control animals. Diet with Schizochytrium extract and safflower oils displayed a tendency to increase the number of new vessels. The number of MPO-positive cells was diminished following any of oil treatment in comparison to the control, but their highest amount was found in animals with a fish oil diet. On the other hand, the number of CD68-positive macrophages was increased, with the most significant enhancement in the fish oil and safflower oil group. Hydroxyproline concentration was the highest in the safflower oil group but it was also enhanced in all other analyzed treatments in comparison to the control. MALDI-MSI signal intensity of a collagen III fragment decreased in the sequence C > S > Sch > P > F treatment. In conclusion, we observed differences in tissue response during healing between dietary oils, with the activation of inflammation observed following the treatment with oil containing high eicosapentaenoic acid (EPA) level (fish oil) and enhanced healing features were induced by the diet with high content of docosahexaenoic acid (DHA, Schizochytrium extract)

    Study on the Memory Effect in Aerosil-Filled Nematic Liquid Crystal Doped with Magnetic Nanoparticles

    No full text
    A study on 5CB liquid crystal composites with SiO2 nanoparticles and an additional commixture with Fe3O4 nanoparticles using light transmission and SAW measurements is presented. The prepared liquid crystal composites exhibited an interesting memory effect characterized by the hysteresis of both light transmission and SAW attenuation responses investigated in the nematic phase. While in the case of SiO2 nanoparticles as dopants, the liquid crystal composite showed an improvement in the memory effect, the addition of Fe3O4 magnetic nanoparticles resulted in the memory effect decreasing. Additional studies showed a significant shift in both the threshold voltage and nematic–isotropic transition temperature. Measurements in the magnetic field confirmed the increasing memory effect according to that of pure 5CB. The properties of these composites could lead to a potential application for the fabrication of memory devices suitable for information storage
    corecore