20 research outputs found

    Strain-induced effects in colloidal quantum dots: lifetime measurements and blinking statistics

    Get PDF
    Abstract A series of samples of CdSe/Cd x Zn 1−x S core/shell quantum dots have been synthesized in order to measure the influence of lattice-mismatch-induced strain on the photoluminescence (PL) and blinking behaviour. The PL spectra show a significant variation of the fluorescence wavelength even though the colloidal quantum dots (cQDs) are similar in size. The PL excitation spectra show a gradual splitting of the first exciton level as the proportion of Zn is increased in the shell and as the shell grows. On the other hand, blinking studies clearly demonstrate a significant dependence on the amount of Zn present in the shell. Distributions of on and off times go from the usual power-law distributions to power-law distributions with exponential cut-offs. These cut-offs become increasingly pronounced as the proportion of Zn increases. We interpret these results in the framework of diffusion-controlled electron transfer. Exciton relaxation lifetime measurements strongly suggest that lattice mismatch is responsible for a greater number of defects in core/shell cQDs. Therefore, strain and lattice mismatch are shown to be parameters of significant importance for the electronic structure of nanocrystals, influencing the photoluminescence, exciton relaxation lifetime and blinking behaviour

    Cavity Magnonics

    Get PDF
    Cavity magnonics deals with the interaction of magnons - elementary excitations in magnetic materials - and confined electromagnetic fields. We introduce the basic physics and review the experimental and theoretical progress of this young field that is gearing up for integration in future quantum technologies. Much of its appeal is derived from the strong magnon-photon coupling and the easily-reached nonlinear regime in microwave cavities. The interaction of magnons with light as detected by Brillouin light scattering is enhanced in magnetic optical resonators, which can be employed to manipulate magnon distributions. The cavity photon-mediated coupling of a magnon mode to a superconducting qubit enables measurements in the single magnon limit
    corecore