161 research outputs found

    GIS methodology and case study regarding assessment of the solar potential at territorial level: PV or thermal?

    Get PDF
    This paper presents a GIS-based methodology for assessing solar photovoltaic (PV) and solar thermal potentials in urban environment. The consideration of spatial and temporal dimensions of energy resource and demand allows, for two different territories of the Geneva region, to determine the suitable building roof areas for solar installations, the solar irradiance on these areas and, finally, the electrical and/or thermal energy potentials related to the demand. Results show that the choice of combining PV and solar thermal for domestic hot water (DHW) is relevant in both territories. Actually, the installation of properly sized solar thermal collectors doesn’t decrease much the solar PV potential, while allowing significant thermal production. However, solar collectors for combined DHW and space heating (SH) require a much larger surface and, therefore, have a more important influence on the PV potential.

    Hydrodynamic Interaction between an Accretion Flow and a Strong Wind around a Black Hole

    Get PDF
    In 2015, space heating and domestic hot water production accounted for around 40% of the Swiss final energy consumption. Reaching the goals of the 2050 energy strategy will require significantly reducing this share despite the growing building stock. Renewables are numerous but subject to spatial–temporal constraints. Territorial planning of energy distribution systems enabling the integration of renewables requires having a spatial–temporal characterization of the energy demand. This paper presents two bottom-up statistical extrapolation models for the estimation of the geo-dependent heat and electricity demand of the Swiss building stock. The heat demand is estimated by means of a statistical bottom-up model applied at the building level. At the municipality level, the electricity load curve is estimated by combining socio-economic indicators with average consumption per activity and/or electric device. This approach also allows to break down the estimated electricity demand according to activity type (e.g., households, various industry, and service activities) and appliance type (e.g., lighting, motor force, fridges). The total estimated aggregated demand is 94 TWh for heat and 58 TWh for electricity, which represent a deviation of 2.9 and 0.5%, respectively compared to the national energy consumption statistics. In addition, comparisons between estimated and measured electric load curves are done to validate the proposed approach. Finally, these models are used to build a geo-referred database of heat and electricity demand for the entire Swiss territory. As an application of the heat demand model, a realistic saving potential is estimated for the existing building stock; this potential could be achieved through by a deep retrofit program. One advantage of the statistical bottom-up model approach is that it allows to simulate a building stock that replicates the diversity of building demand. This point is important in order to correctly account for the mismatch between gross and net energy saving potential, often called performance gap. The impact of this performance gap is substantial since the estimated net saving potential is only half of the gross one

    Etude sur le subventionnement des capteurs solaires thermiques à Genève

    No full text

    Le retour d'expérience au service de l'innovation

    No full text
    Ce texte a été écrit à la demande du Décanat de la Faculté des Sciences de l'Université de Genève afin de préciser le concept de « retour d'expérience » appliqué aux systèmes énergétiques. Ce concept est à la base des travaux effectués par le Groupe Systèmes Energétiques depuis 1978

    La géothermie profonde et sa valorisation énergétique: potentiel et contraintes

    No full text
    L’exploitation de la chaleur du sous-sol profond à des fins énergétiques (chaleur et électricité) pourrait contribuer de manière significative à l’approvisionnement. Par sous-sol profond, on entend la zone située à une profondeur supérieure au km et spontanément dotée d’une température de plus de 40°C, avec un gain d’environ 30°C par km. Ainsi, au niveau du soc cristallin, on s’attend à une température approchant les 200°C. Pour extraire la chaleur du sous-sol, il faut y faire transiter de façon contrôlée de l’eau en grande quantité et c’est la chaleur contenue dans cette eau qui va être utilisée.</p

    Rafraîchissement et préchauffage par tubes enterrés : mesures, simulations &amp; calculs économiques

    No full text
    Sur la base d'un important travail de mesures et de simulations, nous étudions le potentiel des systèmes de tube enterrés sous le climat d'Europe Centrale, en insistant sur la différence fondamentale entre préchauffage hivernal et rafraîchissement estival
    corecore