5,167 research outputs found

    Feasibility and benefits of laminar flow control on supersonic cruise airplanes

    Get PDF
    An evaluation was made of the applicability and benefits of laminar flow control (LFC) technology to supersonic cruise airplanes. Ancillary objectives were to identify the technical issues critical to supersonic LFC application, and to determine how those issues can be addressed through flight and wind-tunnel testing. Vehicle types studied include a Mach 2.2 supersonic transport configuration, a Mach 4.0 transport, and two Mach 2-class fighter concepts. Laminar flow control methodologies developed for subsonic and transonic wing laminarization were extended and applied. No intractible aerodynamic problems were found in applying LFC to airplanes of the Mach 2 class, even ones of large size. Improvements of 12 to 17 percent in lift-drag ratios were found. Several key technical issues, such as contamination avoidance and excresence criteria were identified. Recommendations are made for their resolution. A need for an inverse supersonic wing design methodology is indicated

    Measuring the Cosmic Equation of State with Counts of Galaxies

    Full text link
    The classical dN/dz test allows the determination of fundamental cosmological parameters from the evolution of the cosmic volume element. This test is applied by measuring the redshift distribution of a tracer whose evolution in number density is known. In the past, ordinary galaxies have been used as such a tracer; however, in the absence of a complete theory of galaxy formation, that method is fraught with difficulties. In this paper, we propose studying instead the evolution of the apparent abundance of dark matter halos as a function of their circular velocity, observable via the linewidths or rotation speeds of visible galaxies. Upcoming redshift surveys will allow the linewidth distribution of galaxies to be determined at both z~1 and the present day. In the course of studying this test, we have devised a rapid, improved semi-analytic method for calculating the circular velocity distribution of dark halos based upon the analytic mass function of Sheth et al. (1999) and the formation time distribution of Lacey & Cole (1993). We find that if selection effects are well-controlled and minimal external constraints are applied, the planned DEEP Redshift Survey should allow the measurement of the cosmic equation-of-state parameter w to 10% (as little as 3% if Omega_m has been well-determined from other observations). This type of test has the potential also to provide a constraint on any evolution of w such as that predicted by ``tracker'' models.Comment: 4 pages plus 3 embedded figures; version approved by Ap. J. Letters. A greatly improved error analysis has been added, along with a figure showing complementarity to other cosmological test

    Initial temperature and EoS of quark matter from direct photons

    Get PDF
    The time evolution of the quark gluon plasma created in gold-gold collisions of the Relativistic Heavy Ion Collider (RHIC) can be described by hydrodynamical models. Distribution of hadrons reflects the freeze-out state of the matter. To investigate the time evolution one needs to analyze penetrating probes, such as direct photon spectra. Distributions of low energy photons was published in 2010 by PHENIX. In this paper we analyze a 3+1 dimensional solution of relativistic hydrodynamics and calculate momentum distribution of direct photons. Using earlier fits of this model to hadronic spectra, we compare photon calculations to measurements and find that the initial temperature of the center of the fireball is at least 519+-12 MeV, while for the equation of state we get c_s= 0.36+-0.02.Comment: Talk at the VI Workshop on Particle Correlations and Femtoscopy, Kiev, September 14-18, 2010. 6 pages, 1 figure. This work was supported by the OTKA grant NK73143 and M. Csanad's Bolyai scholarshi

    Forming Clusters of Galaxies as the Origin of Unidentified GeV Gamma-Ray Sources

    Get PDF
    Over half of GeV gamma-ray sources observed by the EGRET experiment have not yet been identified as known astronomical objects. There is an isotropic component of such unidentified sources, whose number is about 60 in the whole sky. Here we calculate the expected number of dynamically forming clusters of galaxies emitting gamma-rays by high energy electrons accelerated in the shock wave when they form, in the framework of the standard theory of structure formation. We find that a few tens of such forming clusters should be detectable by EGRET and hence a considerable fraction of the isotropic unidentified sources can be accounted for, if about 5% of the shock energy is going into electron acceleration. We argue that these clusters are very difficult to detect in x-ray or optical surveys compared with the conventional clusters, because of their extended angular size of about 1 degree. Hence they define a new population of ``gamma-ray clusters''. If this hypothesis is true, the next generation gamma-ray telescopes such as GLAST will detect more than a few thousands of gamma-ray clusters. It would provide a new tracer of dynamically evolving structures in the universe, in contrast to the x-ray clusters as a tracer of hydrodynamically stabilized systems. We also derive the strength of magnetic field required for the extragalactic gamma-ray background by structure formation to extend up to 100 GeV as observed, that is about 10^{-5} of the shock-heated baryon energy density.Comment: Accepted by ApJ after minor revisions. Received May 9, Accepted August 3. 8 pages including 2 figure

    Conceptual design study of a Harrier V/STOL research aircraft

    Get PDF
    MCAIR recently completed a conceptual design study to define modification approaches to, and derive planning prices for the conversion of a two place Harrier to a V/STOL control, display and guidance research aircraft. Control concepts such as rate damping, attitude stabilization, velocity command, and cockpit controllers are to be demonstrated. Display formats will also be investigated, and landing, navigation and guidance systems flight tested. The rear cockpit is modified such that it can be quickly adapted to faithfully simulate the controls, displays and handling qualities of a Type A or Type B V/STOL. The safety pilot always has take command capability. The modifications studied fall into two categories: basic modifications and optional modifications. Technical descriptions of the basic modifications and of the optional modifications are presented. The modification plan and schedule as well as the test plan and schedule are presented. The failure mode and effects analysis, aircraft performance, aircraft weight, and aircraft support are discussed

    Cosmological Implications of the Fundamental Relations of X-ray Clusters

    Get PDF
    Based on the two-parameter family nature of X-ray clusters of galaxies obtained in a separate paper, we discuss the formation history of clusters and cosmological parameters of the universe. Utilizing the spherical collapse model of cluster formation, and assuming that the cluster X-ray core radius is proportional to the virial radius at the time of the cluster collapse, the observed relations among the density, radius, and temperature of clusters imply that cluster formation occurs in a wide range of redshift. The observed relations favor the low-density universe. Moreover, we find that the model of n1n\sim -1 is preferable.Comment: 7 pages, 4 figures. To be published in ApJ Letter

    High-Redshift Galaxies: Their Predicted Size and Surface Brightness Distributions and Their Gravitational Lensing Probability

    Get PDF
    Direct observations of the first generation of luminous objects will likely become feasible over the next decade. The advent of the Next Generation Space Telescope (NGST) will allow imaging of numerous galaxies and mini-quasars at redshifts z>5. We apply semi-analytic models of structure formation to estimate the rate of multiple imaging of these sources by intervening gravitational lenses. Popular CDM models for galaxy formation yield a lensing optical depth of about 1% for sources at redshift 10. The expected slope of the luminosity function of the early sources implies an additional magnification bias of about 5, bringing the fraction of lensed sources at z=10 to about 5%. We estimate the angular size distribution of high-redshift disk galaxies and find that most of them are more extended than the resolution limit of NGST, roughly 0.06 arcseconds. We also show that there is only a modest redshift evolution in the mean surface brightness of galaxies at z>2. The expected increase by 1-2 orders of magnitude in the number of resolved sources on the sky, due to observations with NGST, will dramatically improve upon the statistical significance of existing weak lensing measurements. We show that, despite this increase in the density of sources, confusion noise from z>2 galaxies is expected to be small for NGST observations.Comment: 27 pages, 8 PostScript figures (of which two are new), revised version accepted for Ap

    Nonlinear stochastic biasing from the formation epoch distribution of dark halos

    Get PDF
    We propose a physical model for nonlinear stochastic biasing of one-point statistics resulting from the formation epoch distribution of dark halos. In contrast to previous works on the basis of extensive numerical simulations, our model provides for the first time an analytic expression for the joint probability function. Specifically we derive the joint probability function of halo and mass density contrasts from the extended Press-Schechter theory. Since this function is derived in the framework of the standard gravitational instability theory assuming the random-Gaussianity of the primordial density field alone, we expect that the basic features of the nonlinear and stochastic biasing predicted from our model are fairly generic. As representative examples, we compute the various biasing parameters in cold dark matter models as a function of a redshift and a smoothing length. Our major findings are (1) the biasing of the variance evolves strongly as redshift while its scale-dependence is generally weak and a simple linear biasing model provides a reasonable approximation roughly at R\simgt 2(1+z)\himpc, and (2) the stochasticity exhibits moderate scale-dependence especially on R\simlt 20\himpc, but is almost independent of zz. Comparison with the previous numerical simulations shows good agreement with the above behavior, indicating that the nonlinear and stochastic nature of the halo biasing is essentially understood by taking account of the distribution of the halo mass and the formation epoch.Comment: 34 pages, 11 figures, ApJ (2000) in pres

    Merging history as a function of halo environment

    Full text link
    According to the hierarchical scenario, galaxies form via merging and accretion of small objects. Using N-body simulations, we study the frequency of merging events in the history of the halos. We find that at z<~2 the merging rate of the overall halo population can be described by a simple power law (1+z)^3. The main emphasis of the paper is on the effects of environment of halos at the present epoch (z=0). We find that the halos located inside clusters have formed earlier (dz \approx 1) than isolated halos of the same mass. At low redshifts (z<1), the merger rate of cluster halos is 3 times lower than that of isolated halos and 2 times lower than merger rate of halos that end up in groups by z=0. At higher redshifts (z~1-4), progenitors of cluster and group halos have 3--5 times higher merger rates than isolated halos. We briefly discuss implications of our results for galaxy evolution in different environments.Comment: submitted to the Astrophys. Journal; 11 pages, 9 figs., LaTeX (uses emulateapj.sty

    The Clustering of Massive Halos

    Get PDF
    The clustering properties of dark matter halos are a firm prediction of modern theories of structure formation. We use two large volume, high-resolution N-body simulations to study how the correlation function of massive dark matter halos depends upon their mass and formation history. We find that halos with the lowest concentrations are presently more clustered than those of higher concentration, the size of the effect increasing with halo mass; this agrees with trends found in studies of lower mass halos. The clustering dependence on other characterizations of the full mass accretion history appears weaker than the effect with concentration. Using the integrated correlation function, marked correlation functions, and a power-law fit to the correlation function, we find evidence that halos which have recently undergone a major merger or a large mass gain have slightly enhanced clustering relative to a randomly chosen population with the same mass distribution.Comment: 10 pages, 8 figures; text improved, references and one figure added; accepted for publication in Ap
    corecore