31 research outputs found

    Cervical keratinocytes containing stably replicating extrachromosomal HPV-16 are refractory to transformation by oncogenic H-Ras

    Get PDF
    AbstractRas expression in human epithelial cells with integrated HPV genomes has been shown to cause tumorigenic transformation. The effects of Ras in cells representing early stage HPV-associated disease (i.e., when HPV is extrachromosomal and the oncogenes are under control of native promoters) have not been examined. Here, we used human cervical keratinocyte cell lines containing stably replicating extrachromosomal HPV-16 and present the novel finding that these cells resist transformation by oncogenic H-Ras. Ras expression consistently diminished anchorage-independent growth (AI), reduced E6 and E7 expression, and caused p53 induction in these cells. Conversely, AI was enhanced or maintained in Ras-transduced cervical cells that were immortalized with a 16E6/E7 retrovirus, and minimal effects on E6 and E7 expression were observed. Ras expression with either episomal HPV-16 or LXSN-E6/E7 was insufficient for tumorigenic growth suggesting that other events are needed for tumorigenic transformation. In conclusion, our results indicate that Ras-mediated transformation depends on the context of HPV oncogene expression and that this is an important point to address when developing HPV tumor models

    Regulation of CEACAM1 transcription in human breast epithelial cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Carcinoembryonic antigen cell adhesion molecule 1 (CEACAM1) is a transmembrane protein with multiple functions in different cell types. CEACAM1 expression is frequently mis-regulated in cancer, with down-regulation reported in several tumors of epithelial origin and <it>de novo </it>expression of CEACAM1 in lung cancer and malignant melanoma. In this report we analyzed the regulation of CEACAM1 expression in three breast cancer cell lines that varied in CEACAM1 expression from none (MCF7) to moderate (MDA-MB-468) to high (MCF10A, comparable to normal breast).</p> <p>Results</p> <p>Using <it>in vivo </it>footprinting and chromatin immunoprecipitation experiments we show that the <it>CEACAM1 </it>proximal promoter in breast cells is bound in its active state by SP1, USF1/USF2, and IRF1/2. When down-regulated the <it>CEACAM1 </it>promoter remains accessible to USF2 and partially accessible to USF1. Interferon-Îł up-regulates CEACAM1 mRNA by a mechanism involving further induction of IRF-1 and USF1 binding at the promoter. As predicted by this analysis, silencing of IRF1 and USF1 but not USF2 by RNAi resulted in a significant decrease in CEACAM1 protein expression in MDA-MB-468 cells. The inactive <it>CEACAM1 </it>promoter in MCF7 cells exhibits decreased histone acetylation at the promoter region, with no evidence of H3K9 or H3K27 trimethylation, histone modifications often linked to condensed chromatin structure.</p> <p>Conclusions</p> <p>Our data suggest that transcription activators USF1 and IRF1 interact to modulate CEACAM1 expression and that the chromatin structure of the promoter is likely maintained in a poised state that can promote rapid induction under appropriate conditions.</p

    Genomic analyses in Cornelia de Lange Syndrome and related diagnoses: Novel candidate genes, <scp>genotype–phenotype</scp> correlations and common mechanisms

    Get PDF
    Cornelia de Lange Syndrome (CdLS) is a rare, dominantly inherited multisystem developmental disorder characterized by highly variable manifestations of growth and developmental delays, upper limb involvement, hypertrichosis, cardiac, gastrointestinal, craniofacial, and other systemic features. Pathogenic variants in genes encoding cohesin complex structural subunits and regulatory proteins (NIPBL, SMC1A, SMC3, HDAC8, and RAD21) are the major pathogenic contributors to CdLS. Heterozygous or hemizygous variants in the genes encoding these five proteins have been found to be contributory to CdLS, with variants in NIPBL accounting for the majority (&gt;60%) of cases, and the only gene identified to date that results in the severe or classic form of CdLS when mutated. Pathogenic variants in cohesin genes other than NIPBL tend to result in a less severe phenotype. Causative variants in additional genes, such as ANKRD11, EP300, AFF4, TAF1, and BRD4, can cause a CdLS‐like phenotype. The common role that these genes, and others, play as critical regulators of developmental transcriptional control has led to the conditions they cause being referred to as disorders of transcriptional regulation (or “DTRs”). Here, we report the results of a comprehensive molecular analysis in a cohort of 716 probands with typical and atypical CdLS in order to delineate the genetic contribution of causative variants in cohesin complex genes as well as novel candidate genes, genotype–phenotype correlations, and the utility of genome sequencing in understanding the mutational landscape in this population

    Early structural and functional defects in synapses and myelinated axons in stratum lacunosum moleculare in two preclinical models for tauopaty

    Get PDF
    The stratum lacunosum moleculare (SLM) is the connection hub between entorhinal cortex and hippocampus, two brain regions that are most vulnerable in Alzheimer’s disease. We recently identified a specific synaptic deficit of Nectin-3 in transgenic models for tauopathy. Here we defined cognitive impairment and electrophysiological problems in the SLM of Tau.P301L mice, which corroborated the structural defects in synapses and dendritic spines. Reduced diffusion of DiI from the ERC to the hippocampus indicated defective myelinated axonal pathways. Ultrastructurally, myelinated axons in the temporoammonic pathway (TA) that connects ERC to CA1 were damaged in Tau.P301L mice at young age. Unexpectedly, the myelin defects were even more severe in bigenic biGT mice that co-express GSK3ÎČ with Tau.P301L in neurons. Combined, our data demonstrate that neuronal expression of protein Tau profoundly affected the functional and structural organization of the entorhinal-hippocampal complex, in particular synapses and myelinated axons in the SLM. White matter pathology deserves further attention in patients suffering from tauopathy and Alzheimer’s disease

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Anthropogenic use, modification, and preservation of coastal cave resources in Puerto Rico

    No full text
    Coastal caves throughout the Caribbean basin have provided critical environmental settings for diverse human activities spanning many cultural periods and have ranged from ceremonial, mortuary or ritualistic applications to the practical uses of such shoreline structures within the context of past subsistence strategies and subsequent post-contact commercial exploitation. Coastal caves can harbor significant cultural resources, serving as repositories of archaeological and historical materials as well as providing critical physiographic components of cultural development in the Puerto Rican islands. However, anthropogenic uses of coastal cave sites of the Puerto Rico mainland have received limited attention in comparison to the numerous archeologically and geologically significant cave and karst sites located in the island interior. The comparative distribution and diversity of coastal cave rock art forms can serve as indicators of anthropogenic uses, forming an important baseline data set contributing to a more complete understanding of long-term cultural uses of littoral sites. This study integrates an overview of anthropogenic influences on Puerto Rican coastal karst landforms with their distinctive geomorphologies, correlating defined examples of cave structures with associated pre-contact and post-contact uses, contemporary human impact, and applied management/preservation strategies

    Coastal Cave Development in Puerto Rico

    No full text

    Coastal Karst Landforms

    No full text
    corecore