418 research outputs found

    Simulating Humans as Integral Parts of Spacecraft Missions

    Get PDF
    The Collaborative-Virtual Environment Simulation Tool (C-VEST) software was developed for use in a NASA project entitled "3-D Interactive Digital Virtual Human." The project is oriented toward the use of a comprehensive suite of advanced software tools in computational simulations for the purposes of human-centered design of spacecraft missions and of the spacecraft, space suits, and other equipment to be used on the missions. The C-VEST software affords an unprecedented suite of capabilities for three-dimensional virtual-environment simulations with plug-in interfaces for physiological data, haptic interfaces, plug-and-play software, realtime control, and/or playback control. Mathematical models of the mechanics of the human body and of the aforementioned equipment are implemented in software and integrated to simulate forces exerted on and by astronauts as they work. The computational results can then support the iterative processes of design, building, and testing in applied systems engineering and integration. The results of the simulations provide guidance for devising measures to counteract effects of microgravity on the human body and for the rapid development of virtual (that is, simulated) prototypes of advanced space suits, cockpits, and robots to enhance the productivity, comfort, and safety of astronauts. The unique ability to implement human-in-the-loop immersion also makes the C-VEST software potentially valuable for use in commercial and academic settings beyond the original space-mission setting

    Nucleon-nucleon elastic scattering analysis to 2.5 GeV

    Full text link
    A partial-wave analysis of NN elastic scattering data has been completed. This analysis covers an expanded energy range, from threshold to a laboratory kinetic energy of 2.5 GeV, in order to include recent elastic pp scattering data from the EDDA collaboration. The results of both single-energy and energy-dependent analyses are described.Comment: 23 pages of text. Postscript files for the figures are available from ftp://clsaid.phys.vt.edu/pub/said/n

    Micro-Capsules in Shear Flow

    Full text link
    This paper deals with flow-induced shape transitions of elastic capsules. The state of the art concerning both theory and experiments is briefly reviewed starting with dynamically induced small deformation of initially spherical capsules and the formation of wrinkles on polymerized membranes. Initially non-spherical capsules show tumbling and tank-treading motion in shear flow. Theoretical descriptions of the transition between these two types of motion assuming a fixed shape are at variance with the full capsule dynamics obtained numerically. To resolve the discrepancy, we expand the exact equations of motion for small deformations and find that shape changes play a dominant role. We classify the dynamical phase transitions and obtain numerical and analytical results for the phase boundaries as a function of viscosity contrast, shear and elongational flow rate. We conclude with perspectives on timedependent flow, on shear-induced unbinding from surfaces, on the role of thermal fluctuations, and on applying the concepts of stochastic thermodynamics to these systems.Comment: 34 pages, 15 figure

    A pilot study comparing the metabolic profiles of elite-level athletes from different sporting disciplines

    Get PDF
    Background: The outstanding performance of an elite athlete might be associated with changes in their blood metabolic profile. The aims of this study were to compare the blood metabolic profiles between moderate- and high-power and endurance elite athletes and to identify the potential metabolic pathways underlying these differences. Methods: Metabolic profiling of serum samples from 191 elite athletes from different sports disciplines (121 high- and 70 moderate-endurance athletes, including 44 high- and 144 moderate-power athletes), who participated in national or international sports events and tested negative for doping abuse at anti-doping laboratories, was performed using non-targeted metabolomics-based mass spectroscopy combined with ultrahigh-performance liquid chromatography. Multivariate analysis was conducted using orthogonal partial least squares discriminant analysis. Differences in metabolic levels between high- and moderate-power and endurance sports were assessed by univariate linear models. Results: Out of 743 analyzed metabolites, gamma-glutamyl amino acids were significantly reduced in both high-power and high-endurance athletes compared to moderate counterparts, indicating active glutathione cycle. High-endurance athletes exhibited significant increases in the levels of several sex hormone steroids involved in testosterone and progesterone synthesis, but decreases in diacylglycerols and ecosanoids. High-power athletes had increased levels of phospholipids and xanthine metabolites compared to moderate-power counterparts. Conclusions: This pilot data provides evidence that high-power and high-endurance athletes exhibit a distinct metabolic profile that reflects steroid biosynthesis, fatty acid metabolism, oxidative stress, and energy-related metabolites. Replication studies are warranted to confirm differences in the metabolic profiles associated with athletes’ elite performance in independent data sets, aiming ultimately for deeper understanding of the underlying biochemical processes that could be utilized as biomarkers with potential therapeutic implications

    Dynamics of Fluid Vesicles in Oscillatory Shear Flow

    Full text link
    The dynamics of fluid vesicles in oscillatory shear flow was studied using differential equations of two variables: the Taylor deformation parameter and inclination angle θ\theta. In a steady shear flow with a low viscosity ηin\eta_{\rm {in}} of internal fluid, the vesicles exhibit steady tank-treading motion with a constant inclination angle θ0\theta_0. In the oscillatory flow with a low shear frequency, θ\theta oscillates between ±θ0\pm \theta_0 or around θ0\theta_0 for zero or finite mean shear rate γ˙m\dot\gamma_{\rm m}, respectively. As shear frequency fγf_{\gamma} increases, the vesicle oscillation becomes delayed with respect to the shear oscillation, and the oscillation amplitude decreases. At high fγf_{\gamma} with γ˙m=0\dot\gamma_{\rm m}=0, another limit-cycle oscillation between θ0π\theta_0-\pi and θ0-\theta_0 is found to appear. In the steady flow, θ\theta periodically rotates (tumbling) at high ηin\eta_{\rm {in}}, and θ\theta and the vesicle shape oscillate (swinging) at middle ηin\eta_{\rm {in}} and high shear rate. In the oscillatory flow, the coexistence of two or more limit-cycle oscillations can occur for low fγf_{\gamma} in these phases. For the vesicle with a fixed shape, the angle θ\theta rotates back to the original position after an oscillation period. However, it is found that a preferred angle can be induced by small thermal fluctuations.Comment: 11 pages, 13 figure

    Role of thermodynamic and turbulence processes on the fog life cycle during SOFOG3D experiment

    Get PDF
    In this study, we use a synergy of in situ and remote sensing measurements collected during the SOuthwest FOGs 3D experiment for processes study (SOFOG3D) field campaign in autumn and winter 2019–2020 to analyse the thermodynamic and turbulent processes related to fog formation, evolution, and dissipation across southwestern France. Based on a unique measurement dataset (synergy of cloud radar, microwave radiometer, wind lidar, and weather station data) combined with a fog conceptual model, an analysis of the four deepest fog episodes (two radiation fogs and two advection–radiation fogs) is conducted. The results show that radiation and advection–radiation fogs form under deep and thin temperature inversions, respectively. For both fog categories, the transition period from stable to adiabatic fog and the fog adiabatic phase are driven by vertical mixing associated with an increase in turbulence in the fog layer due to mechanical production (turbulence kinetic energy (TKE) up to 0.4 m2 s−2 and vertical velocity variance (σw2) up to 0.04 m2 s−2) generated by increasing wind and wind shear. Our study reveals that fog liquid water path, fog top height, temperature, radar reflectivity profiles, and fog adiabaticity derived from the conceptual model evolve in a consistent manner to clearly characterise this transition. The dissipation time is observed at night for the advection–radiation fog case studies and after sunrise for the radiation fog case studies. Night-time dissipation is driven by horizontal advection generating mechanical turbulence (TKE at least 0.3 m2 s−2 and σw2 larger than 0.04 m2 s−2). Daytime dissipation is linked to the combination of thermal and mechanical turbulence related to solar heating (near-surface sensible heat flux larger than 10 W m−2) and wind shear, respectively. This study demonstrates the added value of monitoring fog liquid water content and depth (combined with wind, turbulence, and temperature profiles) and diagnostics such as fog liquid water reservoir and adiabaticity to better explain the drivers of the fog life cycle.</p
    corecore