48 research outputs found

    Control of near-infrared supercontinuum bandwidth by adjusting pump pulse duration

    Get PDF
    We experimentally and numerically investigated the impact of input pump pulse duration on the near-infrared bandwidth of supercontinuum generation in a photonic crystal fiber. We continuously stretched the temporal duration of the input pump laser (centered at 1030 nm) pulses from 500 fs up to 10 ps, while keeping fixed the pump peak power. We observed that the long-wavelength edge of the supercontinuum spectrum is increased by 200 nm as the pump pulse duration grows from 500 fs to 10 ps. We provide a quantitative fit of the experimental results by means of numerical simulations. Moreover, we have explained the observed spectral broadening enhancement induced by pump pulse energy by developing an approximate yet fully analytical model for soliton energy exchange through a series of collisions in the presence of stimulated Raman scattering

    Control of near-infrared supercontinuum bandwidth by adjusting pump pulse duration

    Get PDF
    International audienceWe experimentally and numerically investigated the impact of input pump pulse duration on the near-infrared bandwidth of supercontinuum generation in a photonic crystal fiber. We continuously stretched the temporal duration of the input pump laser (centered at 1030 nm) pulses from 500 fs up to 10 ps, while keeping fixed the pump peak power. We observed that the long-wavelength edge of the supercontinuum spectrum is increased by 200 nm as the pump pulse duration grows from 500 fs to 10 ps. We provide a quantitative fit of the experimental results by means of numerical simulations. Moreover, we have explained the observed spectral broadening enhancement induced by pump pulse energy by developing an approximate yet fully analytical model for soliton energy exchange through a series of collisions in the presence of stimulated Raman scattering

    Segmentation and tracking of migrating cells in videomicroscopy with parametric active contours: a tool for cell-based drug testing

    No full text
    International audienceThis paper presents a segmentation and tracking method for quantitative analysis of cell dynamics from in vitro videomicroscopy data. The method is based on parametric active contours and includes several adaptations that address important difficulties of cellular imaging, particularly the presence of low-contrast boundary deformations known as pseudopods, and the occurence of multiple contacts between cells. First, we use an edge map based on the average intensity dispersion that takes advantage of relative background homogeneity to facilitate the detection of both pseudopods and interfaces between adjacent cells. Second, we introduce a repulsive interaction between contours that allows correct segmentation of objects in contact and overcomes the shortcomings of previously reported techniques to enforce contour separation. Our tracking technique was validated on a realistic data set by comparison with a manually defined ground-truth and was successfully applied to study the motility of amoebae in a biological research project
    corecore