1,294 research outputs found

    Query Composition: Why Does It Have to Be So Hard?

    Get PDF
    Project Envision, a large research effort at Virginia Tech, focuses on developing a user centered multimedia database from the computer science literature with full-text searching and full-content retrieval capabilities. User interviews indicate that people have trouble composing queries. Widely available boolean retrieval systems present problems with both syntax and logic. Natural language queries for vector space retrieval systems are easier to compose but users complain that they do not understand the matching principles used; users also complain that they have too little control over the search and fear being overwhelmed by an enormous retrieval set. We describe the Envision query window which has as a usability goal making query composition easy while increasing user control. Results of formative usability evaluation and subsequent redesign are discussed

    Merging of OMI and AIRS Ozone Data

    Get PDF
    The OMI Instrument measures ozone using the backscattered light in the UV part of the spectrum. In polar night there are no OMI measurements so we hope to incorporate the AIRS ozone data to fill in these missing regions. AIRS is on the Aqua platform and has been operating since May 2002. AIRS is a multi-detector array grating spectrometer containing 2378 IR channels between 650 per centimeter and 2760 per centimeter which measures atmospheric temperature, precipitable water, water vapor, CO, CH4, CO2 and ozone profiles and column amount. It can also measure effective cloud fraction and cloud top pressure for up to two cloud layers and sea-land skin temperature. Since 2008, OMI has had part of its aperture occulted with a piece of the thermal blanket resulting in several scan positions being unusable. We hope to use the AIRS data to fill in the missing ozone values for those missing scan positions

    The complete Hard X Ray Burst Spectrometer event list, 1980-1989

    Get PDF
    This event list is a comprehensive reference for all Hard X ray bursts detected with the Hard X Ray Burst Spectrometer on the Solar Maximum Mission from the time of launch on Feb. 14, 1980 to the end of the mission in Dec. 1989. Some 12,776 events were detected in the energy range 30 to 600 keV with the vast majority being solar flares. This list includes the start time, peak time, duration, and peak rate of each event

    Climatology 2011: An MLS and Sonde Derived Ozone Climatology for Satellite Retrieval Algorithms

    Get PDF
    The ozone climatology used as the a priori for the version 8 Solar Backscatter Ultraviolet (SBUV) retrieval algorithms has been updated. The Microwave Limb Sounder (MLS) instrument on Aura has excellent latitude coverage and measures ozone daily from the upper troposphere to the lower mesosphere. The new climatology consists of monthly average ozone profiles for ten degree latitude zones covering pressure altitudes from 0 to 65 km. The climatology was formed by combining data from Aura MLS (2004-2010) with data from balloon sondes (1988-2010). Ozone below 8 km (below 12 km at high latitudes) is based on balloons sondes, while ozone above 16 km (21 km at high latitudes) is based on MLS measurements. Sonde and MLS data are blended in the transition region. Ozone accuracy in the upper troposphere is greatly improved because of the near uniform coverage by Aura MLS, while the addition of a large number of balloon sonde measurements improves the accuracy in the lower troposphere, in the tropics and southern hemisphere in particular. The addition of MLS data also improves the accuracy of climatology in the upper stratosphere and lower mesosphere. The revised climatology has been used for the latest reprocessing of SBUV and TOMS satellite ozone data

    A Global Climatology of Tropospheric and Stratospheric Ozone Derived from Aura OMI and MLS Measurements

    Get PDF
    A global climatology of tropospheric and stratospheric column ozone is derived by combining six years of Aura Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) ozone measurements for the period October 2004 through December 2010. The OMI/MLS tropospheric ozone climatology exhibits large temporal and spatial variability which includes ozone accumulation zones in the tropical south Atlantic year-round and in the subtropical Mediterranean! Asia region in summer months. High levels of tropospheric ozone in the northern hemisphere also persist in mid-latitudes over the eastern North American and Asian continents extending eastward over the Pacific Ocean. For stratospheric ozone climatology from MLS, largest ozone abundance lies in the northern hemisphere in the latitude range 70degN-80degN in February-April and in the southern hemisphere around 40degS-50degS during months August-October. The largest stratospheric ozone abundances in the northern hemisphere lie over North America and eastern Asia extending eastward across the Pacific Ocean and in the southern hemisphere south of Australia extending eastward across the dateline. With the advent of many newly developing 3D chemistry and transport models it is advantageous to have such a dataset for evaluating the performance of the models in relation to dynamical and photochemical processes controlling the ozone distributions in the troposphere and stratosphere

    The hard X-ray burst spectrometer event listing 1980-1987

    Get PDF
    This event listing is a comprehensive reference for the Hard X-ray bursts detected with the Hard X-ray Burst Spectrometer on the Solar Maximum Mission from the time of launch 14 February 1980 to December 1987. Over 8600 X-ray events were detected in the energy range from 30 to approx. 600 keV with the vast majority being solar flares. The listing includes the start time, peak time, duration and peak rate of each event

    The Version 8.6 SBUV Ozone Data Record: An Overview

    Get PDF
    Under a NASA program to produce long-term data records from instruments on multiple satellites, data from a series of nine Solar Backscatter Ultraviolet (SBUV and SBUV2) instruments have been re-processed to create a coherent ozone time series. Data from the BUV instrument on Nimbus 4, SBUV on Nimbus 7, and SBUV2 instruments on NOAA 9, 11, 14, 16, 17, 18, and 19 covering the period 1970-1972 and 1979-2011 were used to create a long-term data set. The goal is an ozone Earth Science Data Record - a consistent, calibrated ozone time series that can be used for trend analyses and other studies. In order to create this ozone data set, the radiances were adjusted and used to re-process the entire data records for each of the nine instruments. Inter-instrument comparisons during periods of overlap as well as comparisons with data from other satellite and ground-based instruments were used to evaluate the consistency of the record and make calibration adjustments as needed. Additional improvements in this version 8.6 processing included the use of the Brion, Daumont, and Malicet ozone cross sections, and a cloud-height climatology derived from Aura OMI measurements. Validation of the re-processed ozone shows that total column ozone is consistent with the Brewer Dobson network to within about 1 for the new time series. Comparisons with MLS, SAGE, sondes, and lidar show that ozone at individual levels in the stratosphere is generally consistent to within 5 percent

    Evaluation of the Ozone Fields in NASA's MERRA-2 Reanalysis

    Get PDF
    The assimilated ozone product from the Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2), produced at NASAs Global Modeling and Assimilation Office (GMAO) is summarized. The reanalysis begins in 1980 with the use of retrieved partial-column ozone concentrations from a series of Solar Backscatter Ultraviolet Radiometer (SBUV) instruments on NASA and NOAA spacecraft. Beginning in October 2004, retrieved ozone profiles from the Microwave Limb Sounder (MLS) and total column ozone from the Ozone Monitoring Instrument (OMI) on NASAs EOS Aura satellite are assimilated. While this change in data streams does lead to a discontinuity in the assimilated ozone fields in MERRA-2, making it not useful for studies in decadal (secular) trends in ozone, this choice was made to prioritize demonstrating the value NASAs high-quality research data in the reanalysis context. The MERRA-2 ozone is compared with independent satellite and ozonesonde data, focusing on the representation of the spatial and temporal variability of stratospheric and upper-tropospheric ozone. The comparisons show agreement within 10 (standard deviation of the difference) between MERRA-2 profiles and independent satellite data in most of the stratosphere. The agreement improves after 2004, when EOS Aura data are assimilated. The standard deviation of the differences between the lower-stratospheric and upper-tropospheric MERRA-2 ozone and ozonesondes is 11.2 and 24.5, respectively, with correlations of 0.8 and above. This is indicative of a realistic representation of the UTLS ozone variability in MERRA-2. After 2004, the upper tropospheric ozone in MERRA-2 shows a low bias compared to the sondes, but the covariance with independent observations is improved compared to earlier years. Case studies demonstrate the integrity of MERRA-2 analyses in representing important features such as tropopause folds

    Expression Analysis of Macrodactyly Identifies Pleiotrophin Upregulation

    Get PDF
    Macrodactyly is a rare family of congenital disorders characterized by the diffuse enlargement of 1 or more digits. Multiple tissue types within the affected digits are involved, but skeletal patterning and gross morphological features are preserved. Not all tissues are equally involved and there is marked heterogeneity with respect to clinical phenotype. The molecular mechanisms responsible for these growth disturbances offer unique insight into normal limb growth and development, in general. To date, no genes or loci have been implicated in the development of macrodactyly. In this study, we performed the first transcriptional profiling of macrodactyly tissue. We found that pleiotrophin (PTN) was significantly overexpressed across all our macrodactyly samples. The mitogenic functions of PTN correlate closely with the clinical characteristics of macrodactyly. PTN thus represents a promising target for further investigation into the etiology of overgrowth phenotypes

    Estimation of Smoothing Error in SBUV Profile and Total Ozone Retrieval

    Get PDF
    Data from the Nimbus-4, Nimbus-7 Solar Backscatter Ultra Violet (SBUV) and seven of the NOAA series of SBUV/2 instruments spanning 41 years are being reprocessed using V8.6 algorithm. The data are scheduled to be released by the end of August 2011. An important focus of the new algorithm is to estimate various sources of errors in the SBUV profiles and total ozone retrievals. We discuss here the smoothing errors that describe the components of the profile variability that the SBUV observing system can not measure. The SBUV(/2) instruments have a vertical resolution of 5 km in the middle stratosphere, decreasing to 8 to 10 km below the ozone peak and above 0.5 hPa. To estimate the smoothing effect of the SBUV algorithm, the actual statistics of the fine vertical structure of ozone profiles must be known. The covariance matrix of the ensemble of measured ozone profiles with the high vertical resolution would be a formal representation of the actual ozone variability. We merged the MLS (version 3) and sonde ozone profiles to calculate the covariance matrix, which in general case, for single profile retrieval, might be a function of the latitude and month. Using the averaging kernels of the SBUV(/2) measurements and calculated total covariance matrix one can estimate the smoothing errors for the SBUV ozone profiles. A method to estimate the smoothing effect of the SBUV algorithm is described and the covariance matrixes and averaging kernels are provided along with the SBUV(/2) ozone profiles. The magnitude of the smoothing error varies with altitude, latitude, season and solar zenith angle. The analysis of the smoothing errors, based on the SBUV(/2) monthly zonal mean time series, shows that the largest smoothing errors were detected in the troposphere and might be as large as 15-20% and rapidly decrease with the altitude. In the stratosphere above 40 hPa the smoothing errors are less than 5% and between 10 and 1 hPa the smoothing errors are on the order of 1%. We validate our estimated smoothing errors by comparing the SBUV ozone profiles with other ozone profiling sensors
    corecore