43 research outputs found

    Transmission behaviors of single mode hollow metallic waveguides dedicated to mid-infrared nulling interferometry

    Full text link
    This paper reports the characterization of hollow metallic waveguides (HMW) to be used as single-mode wavefront filters for nulling interferometry in the 6-20 microns range. The measurements presented here were performed using both single-mode and multimode conductive waveguides at 10.6 microns. We found propagation losses of about 16dB/mm, which are mainly due to the theoretical skin effect absorption in addition to the roughness of the waveguide metallic walls. The input and output coupling efficiency of our samples has been improved by adding tapers to minimize the impedance mismatch. A proper distinction between propagation losses and coupling losses is presented. Despite their elevate propagation losses, HMW show excellent spatial filtering capabilities in a spectral range where photonics technologies are only emerging.Comment: This paper was published in Optics Express and can be found at http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-26-1800

    FWM-based wavelength conversion of 40 Gbaud PSK signals in a silicon germanium waveguide

    No full text
    We demonstrate four wave mixing (FWM) based wavelength conversion of 40 Gbaud differential phase shift keyed (DPSK) and quadrature phase shift keyed (QPSK) signals in a 2.5 cm long silicon germanium waveguide. For a 290 mW pump power, bit error ratio (BER) measurements show approximately a 2-dB power penalty in both cases of DPSK (measured at a BER of 10-9) and QPSK (at a BER of 10-3) signals that we examined

    All-optical phase regeneration with record PSA extinction ratio in a low-birefringence silicon germanium waveguide

    No full text
    We report a low-power continuous wave-pumped phase sensitive amplifier (PSA)-based phase regenerator implemented in a passive silicon-based waveguide. A polarization assisted-PSA, consisting of two orthogonally-polarized pumps and a phase-locked signal copolarized to one of them, was implemented in a low-birefringence silicon germanium (SiGe) waveguide. The strong TE/TM modal symmetry of the waveguide and its large nonlinear coefficient enabled the achievement of an extremely large phase sensitive extinction ratio of approximately 29 dB for a total input power of only 21.3 dBm. This SiGe-based PSA was used to demonstrate phase regeneration on a 20 Gb/s differential phase-shift keying signal, thereby reducing its error vector magnitude and phase error by three and six times respectively and enabling a bit-error ratio improvement of up to 2 dB

    VITRUV - Imaging close environments of stars and galaxies with the VLTI at milli-arcsec resolution

    Get PDF
    The VITRUV project has the objective to deliver milli-arcsecond spectro-images of the environment of compact sources like young stars, active galaxies and evolved stars to the community. This instrument of the VLTI second generation based on the integrated optics technology is able to combine from 4 to 8 beams from the VLT telescopes. Working primarily in the near infrared, it will provide intermediate to high spectral resolutions and eventually polarization analysis. This paper summarizes the result from the concept study led within the Joint Research Activity advanced instruments of the OPTICON program.Comment: In "The Power of Optical/IR Interferometry: Recent Scientific Results and 2nd Generation VLTI Instrumentation", Allemagne (2005) in pres

    Increasing the imaging capabilities of the VLTI using integrated optics

    Get PDF
    Several scientific topics linked to the observation of extended structures around astrophysical sources (dust torus around AGN, disks around young stars, envelopes around AGBs) require imaging capability with milli-arcsecond spatial resolution. The current VLTI instruments, AMBER and MIDI, will provide in the coming months the required high angular resolution, yet without actual imaging. As a rule of thumb, the image quality accessible with an optical interferometer is directly related to the number of telescopes used simultaneously: the more the apertures, the better and the faster the reconstruction of the image. We propose an instrument concept to achieve interferometric combination of N telescopes (4 ≤ N ≤ 8) thanks to planar optics technology: 4 x 8-m telescopes in the short term and/or 8 x 1.8-m telescopes in the long term. The foreseen image reconstruction quality in the visible and/or in the near infrared will be equivalent to the one achieved with millimeter radio interferometers. Achievable spatial resolution will be better than the one foreseen with ALMA. This instrument would be able to acquire routinely 1 mas resolution images. A 13 to 20 magnitude sensitivity in spectral ranges from 0.6 to 2.5 μm is expected depending on the choice of the phase referencing guide source. High dynamic range, even on faint objects, is achievable thanks to the high accuracy provided by integrated optics for visibility amplitude and phase measurements. Based on recent validations of integrated optics presented here an imaging instrument concept can be proposed. The results obtained using the VLTI facilities give a demonstration of the potential of the proposed technique

    VSI: a milli-arcsec spectro-imager for the VLTI

    Get PDF
    VLTi Spectro-Imager (VSI) is a proposition for a second generation VLTI instrument which is aimed at providing the ESO community with the capability of performing image synthesis at milli-arcsecond angular resolution. VSI provides the VLTI with an instrument able to combine 4 telescopes in a baseline version and optionally up to 6 telescopes in the near-infrared spectral domain with moderate to high spectral resolution. The instrument contains its own fringe tracker in order to relax the constraints onto the VLTI infrastructure. VSI will do imaging at the milli-arcsecond scale with spectral resolution of: a) the close environments of young stars probing the initial conditions for planet formation; b) the surfaces of stars; c) the environment of evolved stars, stellar remnants and stellar winds, and d) the central region of active galactic nuclei and supermassive black holes. The science cases allowed us to specify the astrophysical requirements of the instrument and to define the necessary studies of the science group for phase A.Comment: 12 page

    Increasing the imaging capabilities of the VLTI using integrated optics

    Get PDF
    Several scientific topics linked to the observation of extended structures around astrophysical sources (dust torus around AGN, disks around young stars, envelopes around AGBs) require imaging capability with milli-arcsecond spatial resolution. The current VLTI instruments, AMBER and MIDI, will provide in the coming months the required high angular resolution, yet without actual imaging. As a rule of thumb, the image quality accessible with an optical interferometer is directly related to the number of telescopes used simultaneously: the more the apertures, the better and the faster the reconstruction of the image. We propose an instrument concept to achieve interferometric combination of N telescopes (4 ≤ N ≤ 8) thanks to planar optics technology: 4 x 8-m telescopes in the short term and/or 8 x 1.8-m telescopes in the long term. The foreseen image reconstruction quality in the visible and/or in the near infrared will be equivalent to the one achieved with millimeter radio interferometers. Achievable spatial resolution will be better than the one foreseen with ALMA. This instrument would be able to acquire routinely 1 mas resolution images. A 13 to 20 magnitude sensitivity in spectral ranges from 0.6 to 2.5 μm is expected depending on the choice of the phase referencing guide source. High dynamic range, even on faint objects, is achievable thanks to the high accuracy provided by integrated optics for visibility amplitude and phase measurements. Based on recent validations of integrated optics presented here an imaging instrument concept can be proposed. The results obtained using the VLTI facilities give a demonstration of the potential of the proposed technique
    corecore