10 research outputs found

    Ecology of urban malaria vectors in Niamey, Republic of Niger

    Get PDF
    BACKGROUND: Urbanization in African cities has major impact on malaria risk. Niamey, the capital of the Republic of Niger, is situated in the West African Sahel zone. The short rainy season and human activities linked with the Niger River influence mosquito abundance. This study aimed at deciphering the factors of distribution of urban malaria vectors in Niamey. METHODS: The distribution of mosquito aquatic stages was investigated monthly from December 2002 to November 2003, at up to 84 breeding sites, throughout Niamey. An exploratory analysis of association between mosquito abundance and environmental factors was performed by a Principal Component Analysis and confirmed by Kruskall-Wallis non-parametric test. To assess the relative importance of significant factors, models were built for Anopheles and Culicinae. In a second capture session, adult mosquitoes were collected weekly with pyrethrum sprays and CDC light-traps from June 2008 to June 2009 in two differentiated urban areas chosen after the study\u27s first step. Members of the Anopheles gambiae complex were genotyped and Anopheles females were tested for the presence of Plasmodium falciparum circumsporozoite antigens using ELISA. RESULTS: In 2003, 29 % of 8420 mosquitoes collected as aquatic stages were Anopheles. They were significantly more likely to be found upstream, relatively close to the river and highly productive in ponds. These factors remained significant in regression and generalized linear models. The Culicinae were found significantly more likely close to the river, and in the main temporary affluent stream. In 2009, Anopheles specimens, including Anopheles gambiae s.l. (95 %), but also Anopheles funestus (0.6 %) accounted for 18 % of the adult mosquito fauna, with a large difference between the two sampled zones. Three members of the An. gambiae complex were found: Anopheles arabiensis, Anopheles coluzzii, and An. gambiae. Nineteen (1.3 %) out of 1467 females tested for P. falciparum antigen were found positive. CONCLUSION: The study provides valuable update knowledge on malaria vector ecology and distribution in Niamey. The identification of spatial and environmental risk factors could pave the way to larval source management strategy and allow malaria vector control to focus on key zones for the benefit of the community

    A refined estimate of the malaria burden in Niger

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The health authorities of Niger have implemented several malaria prevention and control programmes in recent years. These interventions broadly follow WHO guidelines and international recommendations and are based on interventions that have proved successful in other parts of Africa. Most performance indicators are satisfactory but, paradoxically, despite the mobilization of considerable human and financial resources, the malaria-fighting programme in Niger seems to have stalled, as it has not yet yielded the expected significant decrease in malaria burden. Indeed, the number of malaria cases reported by the National Health Information System has actually increased by a factor of five over the last decade, from about 600,000 in 2000 to about 3,000,000 in 2010. One of the weaknesses of the national reporting system is that the recording of malaria cases is still based on a presumptive diagnosis approach, which overestimates malaria incidence.</p> <p>Methods</p> <p>An extensive nationwide survey was carried out to determine by microscopy and RDT testing, the proportion of febrile patients consulting at health facilities for suspected malaria actually suffering from the disease, as a means of assessing the magnitude of this problem and obtaining a better estimate of malaria morbidity in Niger.</p> <p>Results</p> <p>In total, 12,576 febrile patients were included in this study; 57% of the slides analysed were positive for the malaria parasite during the rainy season, when transmission rates are high, and 9% of the slides analysed were positive during the dry season, when transmission rates are lower. The replacement of microscopy methods by rapid diagnostic tests resulted in an even lower rate of confirmation, with only 42% of cases testing positive during the rainy season, and 4% during the dry season. Fever alone has a low predictive value, with a low specificity and sensitivity. These data highlight the absolute necessity of confirming all reported malaria cases by biological diagnosis methods, to increase the accuracy of the malaria indicators used in monitoring and evaluation processes and to improve patient care in the more remote areas of Niger. This country extends over a large range of latitudes, resulting in the existence of three major bioclimatic zones determining vector distribution and endemicity.</p> <p>Conclusion</p> <p>This survey showed that the number of cases of presumed malaria reported in health centres in Niger is largely overestimated. The results highlight inadequacies in the description of the malaria situation and disease risk in Niger, due to the over-diagnosis of malaria in patients with simple febrile illness. They point out the necessity of confirming all cases of suspected malaria by biological diagnosis methods and the need to take geographic constraints into account more effectively, to improve malaria control and to adapt the choice of diagnostic method to the epidemiological situation in the area concerned. Case confirmation will thus also require a change in behaviour, through the training of healthcare staff, the introduction of quality control, greater supervision of the integrated health centres, the implementation of good clinical practice and a general optimization of the use of available diagnostic methods.</p

    Efficacy and safety of two closely spaced doses of praziquantel against Schistosoma haematobium and S. mansoni and re-infection patterns in school-aged children in Niger

    No full text
    The aim of this study was to assess the efficacy and safety of two closely spaced doses of praziquantel (PZQ) against Schistosoma haematobium and S. mansoni infection in school-aged children, and to characterise re-infection patterns over a 12-month period. The study was carried out in five villages in western Niger: Falmado, Seberi and Libore (single S. haematobium infection foci), and Diambala and Namarigoungou (mixed S. haematobium-S. mansoni infection foci). Parasitological examinations consisted of triplicate urine filtrations and triplicate Kato-Katz thick smears at each visit. Two 40mg/kg oral doses of PZQ were administered 3 weeks apart. Adverse events were monitored within 4h after dosing by the survey team and 24h after treatment using a questionnaire. Our final study cohort comprised 877 children who were infected with either S. haematobium, or S. mansoni, or both species concurrently and received both doses of PZQ. Follow-up visits were conducted 6 weeks, 6 months and 12 months after the first dose of PZQ. At baseline, the geometric mean (GM) infection intensity of S. haematobium ranged from 3.6 (Diambala) to 30.3eggs/10ml of urine (Falmado). The GM infection intensity of S. mansoni ranged from 86.7 (Diambala) to 151.4eggs/g of stool (Namarigoungou). Adverse events were reported by 33.0% and 1.5% of the children after the first and second doses of PZQ, respectively. We found cure rates (CRs) in S. haematobium-infected children 3 weeks after the second dose of PZQ ranging between 49.2% (Falmado) and 98.4% (Namarigoungou) and moderate-to-high egg reduction rates (ERRs) (71.4-100%). Regarding S. mansoni, only moderate CRs and ERRs were found (51.7-58.8% in Diambala, 55.2-60.2% in Namarigoungou). Twelve months post-treatment, prevalence rates approached pre-treatment levels, but infection intensities remained low. In conclusion, PZQ, given in two closely spaced doses, is efficacious against S. haematobium, but the low ERR observed against S. mansoni raises concern about mounting PZQ tolerance

    Epidemiology of malaria in an area of seasonal transmission in Niger and implications for the design of a seasonal malaria chemoprevention strategy

    Get PDF
    Background: Few data are available about malaria epidemiological situation in Niger. However, implementation of new strategies such as vaccination or seasonal treatment of a target population requires the knowledge of baseline epidemiological features of malaria. A population-based study was conducted to provide better characterization of malaria seasonal variations and population groups the most at risk in this particular area. Methods: From July 2007 to December 2009, presumptive cases of malaria among a study population living in a typical Sahelian village of Niger were recorded, and confirmed by microscopic examination. In parallel, asymptomatic carriers were actively detected at the end of each dry season in 2007, 2008 and 2009. Results: Among the 965 presumptive malaria cases recorded, 29% were confirmed by microscopic examination. The incidence of malaria was found to decrease significantly with age (p < 0.01). The mean annual incidence was 0.254. The results show that the risk of malaria was higher in children under ten years (p < 0.0001). The number of malaria episodes generally followed the temporal pattern of changes in precipitation levels, with a peak of transmission in August and September. One-thousand and ninety subjects were submitted to an active detection of asymptomatic carriage of whom 16% tested positive; asymptomatic carriage decreased with increasing age. A higher prevalence of gametocyte carriage among asymptomatic population was recorded in children aged two to ten years, though it did not reach significance. Conclusions: In Southern Niger, malaria transmission mostly occurs from July to October. Children aged two to ten years are the most at risk of malaria, and may also represent the main reservoir for gametocytes. Strategies such as intermittent preventive treatment in children (IPTc) could be of interest in this area, where malaria transmission is highly seasonal. Based on these preliminary data, a pilot study could be implemented in Zindarou using IPTc targeting children aged two to ten years, during the three months of malaria transmission, together with an accurate monitoring of drug resistance.France. Ministère des affaires étrangèresInstitut Pasteur International Networ

    MOESM3 of Ecology of urban malaria vectors in Niamey, Republic of Niger

    No full text
    Additional file 3. Residuals vs fit plots. Plots of the residuals against the fitted values side by side for GLM Poisson models for Anopheles and Culicinae counts

    Age-based targeting of biannual azithromycin distribution for child survival in Niger: an adaptive cluster-randomized trial protocol (AVENIR)

    No full text
    Background: biannual distribution of azithromycin to children 1–59 months old reduced mortality by 14% in a cluster-randomized trial. The World Health Organization has proposed targeting this intervention to the subgroup of children 1–11 months old to reduce selection for antimicrobial resistance. Here, we describe a trial designed to determine the impact of age-based targeting of biannual azithromycin on mortality and antimicrobial resistance. Methods: AVENIR is a cluster-randomized, placebo-controlled, double-masked, response-adaptive large simple trial in Niger. During the 2.5-year study period, 3350 communities are targeted for enrollment. In the first year, communities in the Dosso region will be randomized 1:1:1 to 1) azithromycin 1–11: biannual azithromycin to children 1–11 months old with placebo to children 12–59 months old, 2) azithromycin 1–59: biannual azithromycin to children 1–59 months old, or 3) placebo: biannual placebo to children 1–59 months old. Regions enrolled after the first year will be randomized with an updated allocation based on the probability of mortality in children 1–59 months in each arm during the preceding study period. A biannual door-to-door census will be conducted to enumerate the population, distribute azithromycin and placebo, and monitor vital status. Primary mortality outcomes are defined as all-cause mortality rate (deaths per 1000 person-years) after 2.5 years from the first enrollment in 1) children 1–59 months old comparing the azithromycin 1–59 and placebo arms, 2) children 1–11 months old comparing the azithromycin 1–11 and placebo arm, and 3) children 12–59 months in the azithromycin 1–11 and azithromycin 1–59 arms. In the Dosso region, 50 communities from each arm will be followed to monitor antimicrobial resistance. Primary resistance outcomes will be assessed after 2 years of distributions and include 1) prevalence of genetic determinants of macrolide resistance in nasopharyngeal samples from children 1–59 months old, and 2) load of genetic determinants of macrolide resistance in rectal samples from children 1–59 months old. Discussion: as high-mortality settings consider this intervention, the results of this trial will provide evidence to support programmatic and policy decision-making on age-based strategies for azithromycin distribution to promote child survival. Trial registration: This trial was registered on January 13, 2020 (clinicaltrials.gov: NCT04224987).</p
    corecore