12 research outputs found

    On extrapolation of virial coefficients of hard spheres

    Full text link
    Several methods of extrapolating the virial coefficients, including those proposed in this work, are discussed. The methods are demonstrated on predicting higher virial coefficients of one-component hard spheres. Estimated values of the eleventh to fifteenth virial coefficients are suggested. It has been speculated that the virial coefficients, B_n, beyond B_{14} may decrease with increasing n, and may reach negative values at large n. The extrapolation techniques may be utilized in other fields of science where the art of extrapolation plays a role.Comment: 8 pages, 1 figur

    Structure of ternary additive hard-sphere fluid mixtures

    Full text link
    Monte Carlo simulations on the structural properties of ternary fluid mixtures of additive hard spheres are reported. The results are compared with those obtained from a recent analytical approximation [S. B. Yuste, A. Santos, and M. Lopez de Haro, J. Chem. Phys. 108, 3683 (1998)] to the radial distribution functions of hard-sphere mixtures and with the results derived from the solution of the Ornstein-Zernike integral equation with both the Martynov-Sarkisov and the Percus-Yevick closures. Very good agreement between the results of the first two approaches and simulation is observed, with a noticeable improvement over the Percus-Yevick predictions especially near contact.Comment: 11 pages, including 8 figures; A minor change; accepted for publication in PR

    Self-assembly mechanism in colloids: perspectives from Statistical Physics

    Full text link
    Motivated by recent experimental findings in chemical synthesis of colloidal particles, we draw an analogy between self-assembly processes occurring in biological systems (e.g. protein folding) and a new exciting possibility in the field of material science. We consider a self-assembly process whose elementary building blocks are decorated patchy colloids of various types, that spontaneously drive the system toward a unique and predetermined targeted macroscopic structure. To this aim, we discuss a simple theoretical model -- the Kern-Frenkel model -- describing a fluid of colloidal spherical particles with a pre-defined number and distribution of solvophobic and solvophilic regions on their surface. The solvophobic and solvophilic regions are described via a short-range square-well and a hard-sphere potentials, respectively. Integral equation and perturbation theories are presented to discuss structural and thermodynamical properties, with particular emphasis on the computation of the fluid-fluid (or gas-liquid) transition in the temperature-density plane. The model allows the description of both one and two attractive caps, as a function of the fraction of covered attractive surface, thus interpolating between a square-well and a hard-sphere fluid, upon changing the coverage. By comparison with Monte Carlo simulations, we assess the pros and the cons of both integral equation and perturbation theories in the present context of patchy colloids, where the computational effort for numerical simulations is rather demanding.Comment: 14 pages, 7 figures, Special issue for the SigmaPhi2011 conferenc

    Ninth and Tenth Order Virial Coefficients for Hard Spheres in D Dimensions

    Full text link
    We evaluate the virial coefficients B_k for k<=10 for hard spheres in dimensions D=2,...,8. Virial coefficients with k even are found to be negative when D>=5. This provides strong evidence that the leading singularity for the virial series lies away from the positive real axis when D>=5. Further analysis provides evidence that negative virial coefficients will be seen for some k>10 for D=4, and there is a distinct possibility that negative virial coefficients will also eventually occur for D=3.Comment: 33 pages, 12 figure

    Integral equation study of additive two-component mixtures of hard spheres

    No full text
    The Ornstein-Zernike equation for additive hard sphere mixtures is solved numerically by using the Martynov- Sarkisov (MS) closure and a recent modification of the Verlet (MV) closure. A comparison of the predictions for the equation of state and, to a lesser extent, the contact values of the radial distribution function, shows both theories to give similar, reasonably accurate, results in most situations. However, an examination of the pair cavity functions for zero separation shows the two closures to give quite different results, and the MV closure results are believed to be better. More attention should be given to the cavity function at zero separation. In addition, the MV closure satisfies known asymptotic relations for a small concentration of exceedingly large spheres, whereas the MS and Percus-Yevick closures do not satisfy these relations.link_to_subscribed_fulltex
    corecore