79 research outputs found

    Crystal structure of trioxacarcin A covalently bound to DNA

    Get PDF
    We report a crystal structure that shows an antibiotic that extracts a nucleobase from a DNA molecule ‘caught in the act’ after forming a covalent bond but before departing with the base. The structure of trioxacarcin A covalently bound to double-stranded d(AACCGGTT) was determined to 1.78 Å resolution by MAD phasing employing brominated oligonucleotides. The DNA–drug complex has a unique structure that combines alkylation (at the N7 position of a guanine), intercalation (on the 3′-side of the alkylated guanine), and base flip-out. An antibiotic-induced flipping-out of a single, nonterminal nucleobase from a DNA duplex was observed for the first time in a crystal structure

    FLAVONOIDS FROM SUDANESE ALBIZIA ZYGIA (LEGUMINOSAE, SUBFAMILY MIMO-SOIDEAE), A PLANT WITH ANTIMALARIAL POTENCY

    Get PDF
    Three flavonoids were isolated for the first time from the Sudanese medicinal plants Albizia zygia. Compounds 1-3 were identified by interpretation of ESI mass data, 1H, 13C and 2D NMR as well as by comparison with published data as 4',7-dihydroxyflavanone (1) 3',4',7-trihydroxyflavone (2), 3-O-methylfisetin (3',4',7-trihydroxy-3-methoxyflavone, 3). All flavonoids were tested against Plasmodium falciparum, and only compound 2 showed high antimalarial activity (IC50 0.078 μg/ml)

    AN ACETOXYGENATED ANALOGUE OF ERGOSTEROL FROM A SOFT CORAL OF THE GENUS LOBOPHYTUM

    Get PDF
    Chemical investigation of a soft coral of the genus Lobophytum of Andaman and Nicobar coasts resulted in the isolation of a new marine sterol acetate, (24S)-ergostane-3β,5α,6β,25-tetraol-3,6,25-triacetate (1) and of two known sterol glycosides 3β,4α-dihydroxypregn-20-ene-4-O-β-D-arabinopyranoside and 24-methylenecholest-5-ene-3β,7β,16β-triol-3-O-α-L-fucopyranoside-7β-acetate. The structures of the compounds were elucidated based on spectral studies and chemical conversions

    Mansouramycins E–G, Cytotoxic Isoquinolinequinones from Marine Streptomycetes

    Get PDF
    Chemical investigation of the ethyl acetate extract from the marine-derived Streptomyces sp. isolate B1848 resulted in three new isoquinolinequinone derivatives, the mansouramycins E–G (1a–3a), in addition to the previously reported mansouramycins A (5) and D (6). Their structures were elucidated by computer-assisted interpretation of 1D and 2D NMR spectra, high-resolution mass spectrometry, and by comparison with related compounds. Cytotoxicity profiling of the mansouramycins in a panel of up to 36 tumor cell lines indicated a significant cytotoxicity and good tumor selectivity for mansouramycin F (2a), while the activity profile of E (1a) was less attractive

    Phenolic compounds isolated from Pilea microphylla prevent radiation-induced cellular DNA damage

    Get PDF
    AbstractSix phenolic compounds namely, quercetin-3-O-rutinoside (1), 3-O-caffeoylquinic acid (2), luteolin-7-O-glucoside (3), apigenin-7-O-rutinoside (4), apigenin-7-O-β-d-glucopyranoside (5) and quercetin (6) were isolated from the whole plant of Pilea microphylla using conventional open-silica gel column chromatography and preparative HPLC. Further, these compounds were characterized by 1D, 2D NMR techniques and high-resolution LC–MS. Compounds 1–3 and 6 exhibited significant antioxidant potential in scavenging free radicals such as DPPH, ABTS and SOD with IC50 of 3.3–20.4μmol/L. The same compounds also prevented lipid peroxidation with IC50 of 10.4–32.2μmol/L. The compounds also significantly prevented the Fenton reagent-induced calf thymus DNA damage. Pre-treatment with compounds 1–3 and 6 in V79 cells attenuated radiation-induced formation of reactive oxygen species, lipid peroxidation, cytotoxicity and DNA damage, correlating the antioxidant activity of polyphenols with their radioprotective effects. Compounds 1, 3 and 6 significantly inhibited lipid peroxidation, presumably due to 3′,4′-catechol ortho-dihydroxy moiety in the B-ring, which has a strong affinity for phospholipid membranes. Oxidation of flavonoids, with catechol structure on B-ring, yields a fairly stable ortho-semiquinone radical by facilitating electron delocalization, which is involved in antioxidant mechanism. Hence, the flavonoid structure, number and location of hydroxyl groups together determine the antioxidant and radioprotection mechanism

    Evaluation of in vitro and in vivo activity of benzindazole-4,9-quinones against Cryptosporidium parvum

    Get PDF
    A series of benzindazole-4,9-quinones was tested for growth-inhibitory effects on Cryptosporidium parvum in vitro and in vivo. Most compounds showed considerable activity at concentrations from 25 to 100 µM. For instance, at 25 µM the derivatives 5-hydroxy-8-chloro-N 1 -methylbenz[f]-indazole-4,9-quinone and 5-chloro-N 2 -methylbenz[f]indazole-4,9-quinone inhibited growth of C. parvum 78-100%, and at 50 µM seven of the 23 derivatives inhibited growth ≥90%. The activity of the former two compounds was confirmed in a T-cell receptor α (TCR-α)-deficient mouse model of chronic cryptosporidiosis. In these mice, the mean infectivity scores (IS) in the caecum were 0.63-0.20, whereas in sham-treated mice the score was 1.44 (P < 0.05). There were similar differences in IS in the ileum, where the score for treated mice was 1.12-0.20 and that for mice receiving no drug was 1.32. There was no acute or chronic toxicity for any compound tested in vivo

    Three new pentacyclic triterpenoids from twigs of Manniophyton fulvum (Euphorbiaceae)

    Get PDF
    Phytochemical investigation of the methanol extracts of the twigs of Manniophyton fulvum has led to the isolation and characterization of three new pentacyclic triterpenoids, designated as 3α,28-dihydroxyfriedelan-1-one (1), manniotaraxerol A (3) and manniotaraxerol B (4), along with fourteen known compounds, 3α-hydroxy-1-oxofriedelane (2), betulinic acid (5), friedelin (S1), taraxerol (S2), a mixture of stigmasterol (S3) and β-sitosterol (S4), herranone (S5), docosanoic acid (S6), ursolic acid (S7), nasutin B (S8), bergenin (S9), stigmasterol-3-O-β-d-glucopyranoside (S10), 1,2-di-O-palmitoyl-3-O-(6-sulfo-α-d-quinovopyranosyl)glycerol (S11), and aridanin (S12). The structures of all compounds were determined by comprehensive spectroscopic analyses (1D and 2D NMR, EI and ESI-MS). 3α,28-Dihydroxyfriedelan-1-one (1), 3α-hydroxy-1-oxofriedelane (2), manniotaraxerol A (3), manniotaraxerol B (4), and betulinic acid (5) were evaluated against HeLa (human cervix adenocarcinoma) cancer cells. Manniotaraxerol A (3) showed weak in vitro cytotoxicity with a cell viability value of 49.3%. Betulinic acid (5) also showed significant cytotoxicity against HeLa cell with a cell viability value of 4.0%; the other compounds were inactive in this test

    Larvicidal activity of metabolites from the endophytic Podospora sp. against the malaria vector Anopheles gambiae

    Get PDF
    In a screening for natural products with mosquito larvicidal activities, the endophytic fungus Podospora sp. isolated from the plant Laggera alata (Asteraceae) was conspicuous. Two xanthones, sterigmatocystin (1) and secosterigmatocystin (2), and an anthraquinone derivative (3) 13-hydroxyversicolorin B were isolated after fermentation on M2 medium. These compounds were characterised using spectroscopic and X-ray analysis and examined against third instar larvae of Anopheles gambiae. The results demonstrated that compound 1 was the most potent one with LC50 and LC90 values of 13.3 and 73.5 ppm, respectively. Over 95% mortality was observed at a concentration 100 ppm after 24 h. These results compared farvourably with the commercial larvicide pylarvex® that showed 100% mortality at the same concentration. Compound 3 was less potent and had an LC50 of 294.5 ppm and over 95% mortality was achieved at a concentration of 1,000 ppm. Secosterigmatocystin (2) revealed relatively weak activity and therefore LC values were not determined

    Formation of gutingimycin: analytical investigation of trioxacarcin A-mediated alkylation of dsDNA

    Get PDF
    Formation and fragmentation of recognition complexes between trioxacarcin A and various DNA sequences were examined by temperature-dependent UV and CD spectroscopy, HPLC analysis, and ESI mass spectrometry with regard to reaction conditions, intermediates, products, mechanism, and sequence specificity. Cleavage of the trioxacarcin–DNA complexes provided the natural product gutingimycin by guanine abstraction. The resulting DNA with an abasic site was further cleaved into a DNA fragment with a furanyl unit at the 3′-end and an oligonucleotide with a phosphorylated 5′-end

    Nematicidal activity of fervenulin isolated from a nematicidal actinomycete, Streptomyces sp. CMU-MH021, on Meloidogyne incognita

    Get PDF
    An isolate of the actinomycete, Streptomyces sp. CMU-MH021 produced secondary metabolites that inhibited egg hatch and increased juvenile mortality of the root-knot nematode Meloidogyne incognita in vitro. 16S rDNA gene sequencing showed that the isolate sequence was 99% identical to Streptomyces roseoverticillatus. The culture filtrates form different culture media were tested for nematocidal activity. The maximal activity against M. incognita was obtained by using modified basal (MB) medium. The nematicidal assay-directed fractionation of the culture broth delivered fervenulin (1) and isocoumarin (2). Fervenulin, a low molecular weight compound, shows a broad range of biological activities. However, nematicidal activity of fervenulin was not previously reported. The nematicidal activity of fervenulin (1) was assessed using the broth microdilution technique. The lowest minimum inhibitory concentrations (MICs) of the compound against egg hatch of M. incognita was 30 μg/ml and juvenile mortality of M. incognita increasing was observed at 120 μg/ml. Moreover, at the concentration of 250 μg/ml fervenulin (1) showed killing effect on second-stage nematode juveniles of M. incognita up to 100% after incubation for 96 h. Isocoumarin (2), another bioactive compound produced by Streptomyces sp. CMU-MH021, showed weak nematicidal activity with M. incognita
    corecore