18 research outputs found

    Reconstructing phase diagrams from local measurements via Gaussian processes: mapping the temperature-composition space to confidence

    Get PDF
    We show the ability to map the phase diagram of a relaxor-ferroelectric system as a function of temperature and composition through local hysteresis curve acquisition, with the voltage spectroscopy data being used as a proxy for the (unknown) microscopic state or thermodynamic parameters of materials. Given the discrete nature of the measurement points, we use Gaussian processes to reconstruct hysteresis loops in temperature and voltage space, and compare the results with the raw data and bulk dielectric spectroscopy measurements. The results indicate that the surface transition temperature is similar for all but one composition with respect to the bulk. Through clustering algorithms, we recreate the main features of the bulk diagram, and provide statistical confidence estimates for the reconstructed phase transition temperatures. We validate the method by using Gaussian processes to predict hysteresis loops for a given temperature for a composition unseen by the algorithm, and compare with measurements. These techniques can be used to map phase diagrams from functional materials in an automated fashion, and provide a method for uncertainty quantification and model selection

    Monovalent Ion Condensation at the Electrified Liquid/Liquid Interface

    Full text link
    X-ray reflectivity studies demonstrate the condensation of a monovalent ion at the electrified interface between electrolyte solutions of water and 1,2-dichloroethane. Predictions of the ion distributions by standard Poisson-Boltzmann (Gouy-Chapman) theory are inconsistent with these data at higher applied interfacial electric potentials. Calculations from a Poisson-Boltzmann equation that incorporates a non-monotonic ion-specific potential of mean force are in good agreement with the data.Comment: 4 pages, 4 figure

    Giant thermally-enhanced electrostriction and polar surface phase in La2Mo2O9 oxygen ion conductors

    Get PDF
    Ferroelectrics possess spontaneous electric polarization at macroscopic scales which nonetheless imposes strict limitations on the material classes. Recent discoveries of untraditional symmetry-breaking phenomena in reduced material dimensions have indicated feasibilities to extend polar properties to broader types of materials, potentially opening up the freedom for designing materials with hybrid functionalities. Here, we report the unusual electromechanical properties of La2Mo2O9 (LAMOX) oxygen ion conductors, systematically investigated at both bulk and surface length levels. We first observed giant electrostriction effects in La2Mo2O9 bulk ceramics that are thermally enhanced in concert with their low-energy oxygen-vacancy hopping dynamics. Moreover, while no clear bulk polarization was detected, the surface phases of LAMOX were found to be manifestly polar, likely originating from the coupling between the intrinsic structural flexibilities with strain gradients (i.e., flexoelectricity) and/or chemical heterogeneities present in the materials. These findings identify La2Mo2O9 as a promising electromechanical material system and suggest that the flexible structural and chemical configurations in ionically active materials could enable fundamentally different venues to accommodate electric polarization.Q.L. and H.W. were supported by the US Department of Energy, Office of Science, Materials Science and Engineering Division. T.L. and Y.L. acknowledge the support of the Australian Research Council (ARC) in the form of Discovery Projects (DP160104780). N.L. was supported by the Eugene P. Wigner Fellowship program at ORNL (No. DE-AC05-00OR22725). The PFM experiments were performed at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility at Oak Ridge National Laboratory (ORNL). The use of Advanced Photon Source was supported by the US DOE, Basic Energy Science under Contract No. DE-AC02-06CH11357

    Giant thermally-enhanced electrostriction and polar surface phase in La2Mo2O9 oxygen ion conductors

    Get PDF
    Ferroelectrics possess spontaneous electric polarization at macroscopic scales which nonetheless imposes strict limitations on the material classes. Recent discoveries of untraditional symmetry-breaking phenomena in reduced material dimensions have indicated feasibilities to extend polar properties to broader types of materials, potentially opening up the freedom for designing materials with hybrid functionalities. Here, we report the unusual electromechanical properties of La2Mo2O9 (LAMOX) oxygen ion conductors, systematically investigated at both bulk and surface length levels. We first observed giant electrostriction effects in La2Mo2O9 bulk ceramics that are thermally enhanced in concert with their low-energy oxygen-vacancy hopping dynamics. Moreover, while no clear bulk polarization was detected, the surface phases of LAMOX were found to be manifestly polar, likely originating from the coupling between the intrinsic structural flexibilities with strain gradients (i.e., flexoelectricity) and/or chemical heterogeneities present in the materials. These findings identify La2Mo2O9 as a promising electromechanical material system and suggest that the flexible structural and chemical configurations in ionically active materials could enable fundamentally different venues to accommodate electric polarization
    corecore