329 research outputs found

    Reorientation dynamics of nanoconfined water: Power-law decay, hydrogen-bond jumps, and test of a two-state model

    Get PDF
    This is the publisher's version, also available electronically from http://scitation.aip.org/content/aip/journal/jcp/136/4/10.1063/1.3679404.The reorientation dynamics of water confined within nanoscale, hydrophilicsilica pores are investigated using molecular dynamics simulations. The effect of surface hydrogen-bonding and electrostatic interactions are examined by comparing with both a silica pore with no charges (representing hydrophobic confinement) and bulk water. The OH reorientation in water is found to slow significantly in hydrophilic confinement compared to bulk water, and is well-described by a power-law decay extending beyond one nanosecond. In contrast, the dynamics of water in the hydrophobic pore are more modestly affected. A two-state model, commonly used to interpret confined liquid properties, is tested by analysis of the position-dependence of the water dynamics. While the two-state model provides a good fit of the orientational decay, our molecular-level analysis evidences that it relies on an over-simplified picture of water dynamics. In contrast with the two-state model assumptions, the interface dynamics is markedly heterogeneous, especially in the hydrophilic pore and there is no single interfacial state with a common dynamics

    Simulations of the infrared, Raman, and 2D-IR photon echo spectra of water in nanoscale silica pores

    Get PDF
    Vibrational spectroscopy is frequently used to characterize nanoconfined liquids and probe the effect of the confining framework on the liquid structure and dynamics relative to the corresponding bulk fluid. However, it is still unclear what molecular-level information can be obtained from such measurements. In this paper, we address this question by using molecular dynamics (MD) simulations to reproduce the linear infrared (IR), Raman, and two-dimensional IR (2D-IR) photon echo spectra for water confined within hydrophilic (hydroxyl-terminated) silica mesopores. To simplify the spectra the OH stretching region of isotopically dilute HOD in D2O is considered. An empirical mapping approach is used to obtain the OH vibrational frequencies, transition dipoles, and transition polarizabilities from the MD simulations. The simulated linear IR and Raman spectra are in good general agreement with measured spectra of water in mesoporous silica reported in the literature. The key effect of confinement on the water spectrum is a vibrational blueshift for OH groups that are closest to the pore interface. The blueshift can be attributed to the weaker hydrogen bonds (H-bonds) formed between the OH groups and silica oxygen acceptors. Non-Condon effects greatly diminish the contribution of these OH moieties to the linear IR spectrum, but these weaker H-bonds are readily apparent in the Raman spectrum. The 2D-IR spectra have not yet been measured and thus the present results represent a prediction. The simulated spectra indicates that it should be possible to probe the slower spectral diffusion of confined water compared to the bulk liquid by analysis of the 2D-IR spectra

    Origins of the non-exponential reorientation dynamics of nanoconfined water

    Get PDF
    This is the published version. Copyright 2014 American Institute of PhysicsThe dynamics of water are dramatically modified upon confinement in nanoscale hydrophilic silica pores. In particular, the OH reorientation dynamics of the interfacial water are non-exponential and dramatically slowed relative to the bulk liquid. A detailed analysis of molecular dynamics simulations is carried out to elucidate the microscopic origins of this behavior. The results are analyzed in the context of the extended jump model for water that describes the reorientation as a combination of hydrogen-bond exchanges, or jumps, and rotation of intact hydrogen bonds, with the former representing the dominant contribution. Within this model, the roles of surface and dynamical heterogeneities are considered by spatially resolving the hydrogen-bond jump dynamics into individual sites on the silica pore surface. For each site the dynamics is nearly mono-exponential, indicating that dynamical heterogeneity is at most a minor influence, while the distribution of these individual site jump times is broad. The non-exponential dynamics can also not be attributed to enthalpic contributions to the barriers to hydrogen-bond exchanges. Two entropic effects related to the surface roughness are found to explain the retarded and diverse dynamics: those associated with the approach of a new hydrogen-bond acceptor and with the breaking of the initial hydrogen-bond

    Long-term planning and its role as a tool of fiscal security of the economy

    Get PDF
    Актуальность исследования определяется тем, что обеспечение бюджетно-финансовой безопасности в России связано с проведением исполнительными органами государственной власти бюджетно-финансового планирования, основанного на принципах законности, плановости и открытости, прописанных в Бюджетном кодексе РФ. Все это рождает острую необходимость принятия базового документа (Долгосрочной бюджетной стратегии). Цель работы: провести анализ бюджетно-финансового планирования в его историческом, межстрановом и правовом аспектах, дать характеристику современного состояния бюджетно-финансового планирования в России. Методы исследования: моделирование, обобщение зарубежного опыта использования долгосрочного планирования, сопоставление и контент-анализ, который позволил выявить принципы долгосрочного планирования в бюджетной сфере, а также острую необходимость принятия Долгосрочной бюджетной стратегии на современном этапе в России. Результаты. Проведенное исследование отражает генезис бюджетного планирования в России в 1917-2017 гг. Анализ применения такого планирования в развитых странах (США, Германия, Великобритания, Франция и др.) определил основные принципы, которые могут быть заложены в основу Долгосрочной бюджетной стратегии в России на федеральном и региональном уровнях. Как основной базовый документ бюджетно-финансового планирования текущего периода утвержденная Долгосрочная бюджетная стратегия позволит предопределить результаты долгосрочного развития и обеспечить достаточный уровень экономической безопасности бюджетно- финансовой сферы.The relevance of this research is determined by the fact that ensuring fiscal security in Russia is connected with the Executive bodies of state power, budget and financial planning based on the principles of legality, planning and openness spelled out in the Budget code of the Russian Federation. All this creates an urgent need of adoption of the core document (Long-term budget strategy). The aim of the work is to analyze the budget and financial planning in its historical, interstate and legal aspects, State of fiscal planning in Russia. Research methods: modeling, generalization of foreign experience in using long-term planning. Comparison and content analysis, which allowed revealing the principles of long-term planning in the budgetary sphere and urgent need to adopt a Long-term budget strategy at the present stage in Russia. Results. The study reflects the Genesis of budget planning in Russia in 1917-2017. Analysis of application of such planning in developed countries (USA, Germany, UK, France, etc.) helped identify basic principles that can be the base of Long-term budget strategy in Russia at Federal and regional levels. The approved Long-term budget strategy, as the base document for budget and financial planning of the current period, will enable to predetermine the outcome of long-term development and to ensure a sufficient level of economic security fiscal sphere

    Water Dynamics at Protein Interfaces: Ultrafast Optical Kerr Effect Study

    Get PDF
    The behavior of water molecules surrounding a protein can have an important bearing on its structure and function. Consequently, a great deal of attention has been focused on changes in the relaxation dynamics of water when it is located at the protein surface. Here we use the ultrafast optical Kerr effect to study the H-bond structure and dynamics of aqueous solutions of proteins. Measurements are made for three proteins as a function of concentration. We find that the water dynamics in the first solvation layer of the proteins are slowed by up to a factor of 8 in comparison to those in bulk water. The most marked slowdown was observed for the most hydrophilic protein studied, bovine serum albumin, whereas the most hydrophobic protein, trypsin, had a slightly smaller effect. The terahertz Raman spectra of these protein solutions resemble those of pure water up to 5 wt % of protein, above which a new feature appears at 80 cm–1, which is assigned to a bending of the protein amide chain

    Disaccharide topology induces slow down in local water dynamics

    Get PDF
    Molecular level insight into water structure and structural dynamics near proteins, lipids and nucleic acids is critical to the quantitative understanding of many biophysical processes. Un- fortunately, understanding hydration and hydration dynamics around such large molecules is challenging because of the necessity of deconvoluting the effects of topography and chemical heterogeneity. Here we study, via classical all atom simulation, water structure and structural dynamics around two biologically relevant solutes large enough to have significant chemical and topological heterogeneity but small enough to be computationally tractable: the disaccharides Kojibiose and Trehalose. We find both molecules to be strongly amphiphilic (as quantified from normalized local density fluctuations) and to induce nonuniform local slowdown in water translational and rotational motion. Detailed analysis of the rotational slowdown shows that while the rotational mechanism is similar to that previously identified in other aqueous systems by Laage, Hynes and coworkers, two novel characteristics are observed: broadening of the transition state during hydrogen bond exchange (water rotation) and a subpopulation of water for which rotation is slowed because of hindered access of the new accepting water molecule to the transition state. Both of these characteristics are expected to be generic features of water rotation around larger biomolecules and, taken together, emphasize the difficulty in transferring insight into water rotation around small molecules to much larger amphiphilic solutes.This work is part of the research program of the “Stichting voor Fundamenteel Onderzoek der Materie (FOM)” which is financially supported by the “Nederlandse organisatie voor Wetenschap- pelijk Onderzoek (NWO)”. Further financial support was provided by a Marie Curie Incoming International Fellowship (RKC). We gratefully acknowledge SARA, the Dutch center for high- performance computing, for computational time and Huib Bakker and Daan Frenkel for useful critical reviews on an earlier version of this work. We thank two anonymous reviewers for their excellent work, especially for bringing to our attention calculations done on the transition state geometry of dimers and the overstructuring of the O-O radial distribution function of SPC/E water

    An extended window of opportunity for G-CSF treatment in cerebral ischemia

    Get PDF
    BACKGROUND: Granulocyte-colony stimulating factor (G-CSF) is known as a powerful regulator of white blood cell proliferation and differentiation in mammals. We, and others, have shown that G-CSF is effective in treating cerebral ischemia in rodents, both relating to infarct size as well as functional recovery. G-CSF and its receptor are expressed by neurons, and G-CSF regulates apoptosis and neurogenesis, providing a rational basis for its beneficial short- and long-term actions in ischemia. In addition, G-CSF may contribute to re-endothelialisation and arteriogenesis in the vasculature of the ischemic penumbra. In addition to these trophic effects, G-CSF is a potent neuroprotective factor reliably reducing infarct size in different stroke models. RESULTS: Here, we have further delayed treatment and studied effects of G-CSF on infarct volume in the middle cerebral artery occlusion (MCAO) model and functional outcome in the cortical photothrombotic model. In the MCAO model, we applied a single dose of 60 μg/kg bodyweight G-CSF in rats 4 h after onset of ischemia. Infarct volume was determined 24 h after onset of ischemia. In the rat photothrombotic model, we applied 10 μg/kg bodyweight G-CSF daily for a period of 10 days starting either 24 or 72 h after induction of ischemia. G-CSF both decreased acute infarct volume in the MCAO model, and improved recovery in the photothrombotic model at delayed timepoints. CONCLUSION: These data further strengthen G-CSF's profile as a unique candidate stroke drug, and provide an experimental basis for application of G-CSF in the post-stroke recovery phase

    Noncovalent Interactions of Hydrated DNA and RNA Mapped by 2D-IR Spectroscopy

    Full text link
    Biomolecules couple to their aqueous environment through a variety of noncovalent interactions. Local structures at the surface of DNA and RNA are frequently determined by hydrogen bonds with water molecules, complemented by non-specific electrostatic and many-body interactions. Structural fluctuations of the water shell result in fluctuating Coulomb forces on polar and/or ionic groups of the biomolecular structure and in a breaking and reformation of hydrogen bonds. Two-dimensional infrared (2D-IR) spectroscopy of vibrational modes of DNA and RNA gives insight into local hydration geometries, elementary molecular dynamics, and the mechanisms behind them. In this chapter, recent results from 2D-IR spectroscopy of native and artificial DNA and RNA are presented, together with theoretical calculations of molecular couplings and molecular dynamics simulations. Backbone vibrations of DNA and RNA are established as sensitive noninvasive probes of the complex behavior of hydrated helices. The results reveal the femtosecond fluctuation dynamics of the water shell, the short-range character of Coulomb interactions, and the strength and fluctuation amplitudes of interfacial electric fields.Comment: To appear as Chapter 8 of Springer Series in Optical Sciences: Coherent Multidimensional Spectroscopy -- Editors: Cho, Minhaeng (Ed.), 201

    Granulocyte-Colony Stimulating Factor (G-CSF) in Stroke Patients with Concomitant Vascular Disease—A Randomized Controlled Trial

    Get PDF
    G-CSF has been shown in animal models of stroke to promote functional and structural regeneration of the central nervous system. It thus might present a therapy to promote recovery in the chronic stage after stroke.Here, we assessed the safety and tolerability of G-CSF in chronic stroke patients with concomitant vascular disease, and explored efficacy data. 41 patients were studied in a double-blind, randomized approach to either receive 10 days of G-CSF (10 µg/kg body weight/day), or placebo. Main inclusion criteria were an ischemic infarct >4 months prior to inclusion, and white matter hyperintensities on MRI. Primary endpoint was number of adverse events. We also explored changes in hand motor function for activities of daily living, motor and verbal learning, and finger tapping speed, over the course of the study.Adverse events (AEs) were more frequent in the G-CSF group, but were generally graded mild or moderate and from the known side-effect spectrum of G-CSF. Leukocyte count rose after day 2 of G-CSF dosing, reached a maximum on day 8 (mean 42/nl), and returned to baseline 1 week after treatment cessation. No significant effect of treatment was detected for the primary efficacy endpoint, the test of hand motor function.These results demonstrate the feasibility, safety and reasonable tolerability of subcutaneous G-CSF in chronic stroke patients. This study thus provides the basis to explore the efficacy of G-CSF in improving chronic stroke-related deficits.ClinicalTrials.gov NCT00298597
    corecore